Annali di Matematica Pura ed Applicata

, Volume 91, Issue 1, pp 283–303 | Cite as

Anelli Henseliani topologici

  • Paolo Valabrega


In the present work we give a generalization of the concept of « ring henselian with respect to its idealm », by introducing the concept of « ring henselian with respect to the idealm and the linear topology τ ». Then we get the henselization of a triple (A,m, τ) (ring, ideal, linear topology) and investigate its relations with completion, mainly in the «m-adic » situation. Among our results there is also a reformulation, with less restrictive hypothesis, of the Hensel lemma as it is given in Bourbaki.


  1. [1]
    G. Azumaya,On Maximally central Algebras, Nagoya Math. J., T. 2 (1951), pp. 119–150.zbMATHMathSciNetGoogle Scholar
  2. [2]
    N. Bourbaki,Algébre, Cap. II, Hermann, Paris, 1967.Google Scholar
  3. [3]
    N. Bourbaki,Algébre, Cap. VIII, Hermann, Paris, 1961.Google Scholar
  4. [4]
    N. Bourbaki,Algébre Commutative, Cap. I, II, Hermann, Paris, 1965.Google Scholar
  5. [5]
    N. Bourbaki,Algébre Commutative, Cap. III, IV, Hermann, Paris, 1961.Google Scholar
  6. [6]
    N. Bourbaki,Théories des Ensembles, Cap. III, Hermann, Paris, 1967.Google Scholar
  7. [7]
    N. Bourbaki,Topologie Générale, Cap. I, II, Hermann, Paris, 1965.Google Scholar
  8. [8]
    N. Bourbaki,Topologie Générale, Cap. III, IV, Hermann, Paris, 1960.Google Scholar
  9. [9]
    N. Bourbaki,Topologie Générale, Cap. IX, Hermann, Paris, 1958.Google Scholar
  10. [10]
    S. Greco,Algebras over non local Hensel rings, Journal of Algebra,8 (1968), pp. 45–59.zbMATHMathSciNetCrossRefGoogle Scholar
  11. [11]
    S. Greco,Henselization of a ring with respect to an ideal, Trans. Amer. Math. Soc.,144 (1969), pp. 43–65.zbMATHMathSciNetCrossRefGoogle Scholar
  12. [12]
    S. Greco,Sugli omomorfismi piatti e non ramificati, Le Matematiche, Vol. XXIV, Fasc. 2 (1969), pp. 392–415.MathSciNetGoogle Scholar
  13. [13]
    J. P. Lafon,Anneaux Henseliens, Bull. Soc. Math. France,91 (1963), pp. 77–108.zbMATHMathSciNetGoogle Scholar
  14. [14]
    M. Nagata,On the theory of henselian rings: I) Nagoya Math. J., T. 5 (1953), pp. 45–57; II) idem, T. 7 (1954), pp. 1–19; III) Mem. Coll. Sc. Univ. Kyoto, serie A, Math., T. 32 (1960), pp. 93–101.zbMATHMathSciNetGoogle Scholar
  15. [15]
    M. Nagata,Local Rings, Interscience, New York, 1962.Google Scholar
  16. [16]
    M. Raynaud,Anneaux Locaux Henséliens, Springer-Verlag, New York, 1970.Google Scholar
  17. [17]
    P. Salmon,Sur les séries formelles restreintes, Bull. Soc. Math. France,92 (1964), pp. 385–410.zbMATHMathSciNetGoogle Scholar

Copyright information

© Nicola Zanichelli Editore 1971

Authors and Affiliations

  • Paolo Valabrega

There are no affiliations available

Personalised recommendations