Advertisement

Stochastic Hydrology and Hydraulics

, Volume 11, Issue 1, pp 65–93 | Cite as

Multivariate nonparametric resampling scheme for generation of daily weather variables

  • B. Rajagopalan
  • U. Lall
  • D. G. Tarboton
  • D. S. Bowles
Originals

Abstract

A nonparametric resampling technique for generating daily weather variables at a site is presented. The method samples the original data with replacement while smoothing the empirical conditional distribution function. The technique can be thought of as a smoothed conditional Bootstrap and is equivalent to simulation from a kernel density estimate of the multivariate conditional probability density function. This improves on the classical Bootstrap technique by generating values that have not occurred exactly in the original sample and by alleviating the reproduction of fine spurious details in the data. Precipitation is generated from the nonparametric wet/dry spell model as described in Lall et al. [1995]. A vector of other variables (solar radiation, maximum temperature, minimum temperature, average dew point temperature, and average wind speed) is then simulated by conditioning on the vector of these variables on the preceding day and the precipitation amount on the day of interest. An application of the resampling scheme with 30 years of daily weather data at Salt Lake City, Utah, USA, is provided.

Key words

Nonparametric Monte Carlo precipitation weather 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bruhn, J.A.; Fry, W.E.; Fick, G.W. 1980: Simulation of daily weather data using theoretical probability distributions, J. Appl. Meteorology 19(9), 1029–1036CrossRefGoogle Scholar
  2. Devroye, L. 1986: Non-Uniform Random Variate Generation. Springer-Verlag, New YorkGoogle Scholar
  3. Jianping, D.; Simonoff, J. 1994: The construction and properties of boundary kernels for sparse multinomials, J. Comp. Graph. Statis. 3, 1–10CrossRefGoogle Scholar
  4. Efron, B. 1979: Bootstrap methods: Another look at the Jackknife, Ann. Stat. 7, 1–26Google Scholar
  5. Hall, P.; Titterington, D.M. 1987: On smoothing sparse multinomial data, Australian J. Stat. 29(1), 19–37Google Scholar
  6. Jones, W.; Rex, R.C.; Threadgill, D.E. 1972: A simulated environmental model of temperature, evaporation, rainfall, and soil moisture, Trans. of the ASAE, 366–372Google Scholar
  7. Kunsch, H.R. 1989: The Jackknife and the Bootstrap for general stationary observations, Ann. Stat. 17, 1217–1241Google Scholar
  8. Lall, U.; Rajagopalan, B.; Tarboton, D.G. 1995: A nonparametric wet/dry spell model for resampling daily precipitation, Water Resour. Res.Google Scholar
  9. Lane, L.J.; Nearing, M.A. 1989: USDA — Water Erosion Prediction Project: Hill Slope Profile Model Documentation, NSERL Report No. 2, National Soil Erosion Research Laboratory, USDA-Agricultural Research Service, W. Lafayette, Indiana 47907Google Scholar
  10. Liu, R.Y.; Singh, K. 1988: Using iid Bootstrap Inference for Some Non-iid Models, Preprint. Department of Statistics, Rutgers UniversityGoogle Scholar
  11. Nicks, A.D.; Harp, J.F. 1980: Stochastic generation of temperature and solar radiation data, J. Hydr. 48, 1–7CrossRefGoogle Scholar
  12. Rajagopalan, B.; Lall, U. 1995: A kernel estimator for discrete distributions, J. Nonparametric Stat. 4, 409–426Google Scholar
  13. Rajagopalan, B.; Lall, U.; Tarboton, D.G. 1995: Evaluation of kernel density estimation methods for daily precipitation resampling, Water Resour. Res., Sep. 1996Google Scholar
  14. Richardson, C.W. 1981: Stochastic simulation of daily precipitation, temperature, and solar radiation, Water Resour. Res. 17(1), 182–190Google Scholar
  15. Rosenblatt, M. 1956: Remarks on some nonparametric estimates of a density function, Ann. Math. Stat. 27, 832–837Google Scholar
  16. Sain, S.R.; Baggerly, K.A.; Scott, D.W. 1994: Cross-validation of multivariate densities, J. Amer. Stat. Assoc. 89(427), 807–817CrossRefGoogle Scholar
  17. Scott, D.W. 1992: Multivariate Density Estimation, John Wiley and Sons, Inc., New YorkGoogle Scholar
  18. Sharma, A.; Tarboton, D.G.; Lall, U. 1995: Streamflow simulation: A nonparametric approach, Water Resour. Res., in pressGoogle Scholar
  19. Sheather, S.J.; Jones, M.C. 1991: A reliable data-based bandwidth selection method for kernel density estimation, J. Royal Stat. Soc. B53, 683–690Google Scholar
  20. Silverman, B.W. 1986: Density Estimation for Statistics and Data Analysis. Chapman and Hall, New YorkGoogle Scholar
  21. Wand, M.P.; Jones, M.C. 1994: Multivariate plug-in bandwidth selection, Comp. Stat, 9, 97–116Google Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • B. Rajagopalan
    • 1
  • U. Lall
    • 2
  • D. G. Tarboton
    • 2
  • D. S. Bowles
    • 2
  1. 1.Lamont-Doherty Earth ObservatoryColumbia UniversityPalisadesUSA
  2. 2.Utah Water Research Lab.Utah State UniversityLoganUSA

Personalised recommendations