Advertisement

Annali di Matematica Pura ed Applicata

, Volume 31, Issue 1, pp 143–230 | Cite as

Mixed laplacians and potential representations

  • W. J. Trjitzinsky
Article

Summary

Study of mixed and other generalizations of the Laplacian; the related « Poisson » formulas and potential representations. Most of this is a preliminary to the larger eventual problem of totalization of Laplacians.

Keywords

Potential Representation Eventual Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. (1).
    A. Denjoy,Leçons sur le calcul des coefficients d’une serie trigonométrique, Paris I, ..., IV, Paris, 1941–1949; pp. 1–714; referred to as (D).Google Scholar
  2. (2).
    S. Zaremba,Contribution à la theorie d’une équation fonctionnelle de la Physique, « Rendiconti del Circolo Mat. di Palermo », t. 19, 1905, pp. 140–150.zbMATHGoogle Scholar
  3. (3).
    M. Brelot,Étude de l’équation de la chaleur ..., « Annales scient. de l’éc. norm. sup. », t. 67, 1931, pp. 153–246.MathSciNetGoogle Scholar
  4. (4).
    F. Riesz, « Acta Mathematica », t. 48 and t. 54.Google Scholar
  5. (5).
    W. J. Trjitzinsky,Problems of representation and uniqueness for functions of a complex variable, « Acta Mathematica », t. 78, pp. 97–192; referred to as (T 1);Google Scholar
  6. (5a).
    W. J. Trjitzinsky,Theory of functions of intervals and application to functions of a complex variable, « Journ. de Mathématiques «, t. 25, 1946, pp. 347–395; referred to as (T).MathSciNetGoogle Scholar
  7. (6).
    S. Saks,Theory of the Integral, Warszawa-Lwow, 1937; referred to as (S).Google Scholar

Copyright information

© Swets & Zeitlinger B. V. 1950

Authors and Affiliations

  • W. J. Trjitzinsky
    • 1
  1. 1.UrbanaU. S. A.

Personalised recommendations