Advertisement

Molecular and General Genetics MGG

, Volume 205, Issue 1, pp 66–73 | Cite as

Physical and genetic characterisation of the gene cluster for the antibiotic actinorhodin inStreptomyces coelicolor A3(2)

  • Francisco Malpartida
  • David A. Hopwood
Article

Summary

We determined the physical and transcriptional organisation of the set of previously cloned biosynthetic genes involved in the production of the polyketide antibiotic actinorhodin byStreptomyces coelicolor A3(2). Complementation and mutational cloning analyses (in part using new ϕC31 phage vectors incorporating a transcriptional terminator to block transcription from vector promoters into the cloned DNA) indicate that all the biosynthetic genes, including at least one regulatory (activator) gene, are clustered in a chromosomal region of about 26 kb. The genes are organised in at least four separate transcription units, ranging in size from 1 kb for the class III gene, to a polycistronic transcript of at least 5 kb for the class I, VII and IV genes. Indirect evidence shows that resistance to actinorhodin is also determined by the cloned DNA.

Key words

Streptomyces Polyketide antibiotic Mutational cloning ϕC31 phage 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bolivar F, Rodriguez RL, Greene PJ, Betlach MC, Heynecker HL, Boyer HW, Crosa JH, Falkow S (1977) Construction and characterisation of new cloning vehicles. II. A multipurpose cloning system. Gene 2:95–113PubMedCrossRefGoogle Scholar
  2. Brockman H, Zeeck A, Van der Merve K, Müller W (1966) Die Konstitution des Actinorhodins Justus Liebigs Annln Chem 698:3575–3579Google Scholar
  3. Chater KF, Bruton CJ (1983) Mutational cloning inStreptomyces and the isolation of antibiotic production genes. Gene 26:67–78PubMedCrossRefGoogle Scholar
  4. Chater KF, Bruton CJ (1985) Resistance, regulatory and production genes for the antibiotic methylenomycin are clustered. EMBO J 4:1893–1897PubMedGoogle Scholar
  5. Chater KF, Bruton CJ, King AA, Suarez JE (1982) The expression ofStreptomyces andEscherichia coli drug-resistance determinants cloned into theStreptomyces phage ϕC31. Gene 19:21–32PubMedCrossRefGoogle Scholar
  6. Chater KF, Hopwood DA, Kieser T, Thompson CJ (1982) Gene cloning inStreptomyces. Curr Topics Microbiol Immunol 96:69–95Google Scholar
  7. Feitelson JS, Hopwood DA (1983) Cloning of aStreptomyces gene for an O-methyltransferase involved in antibiotic biosynthesis. Mol Gen Genet 190:394–398PubMedCrossRefGoogle Scholar
  8. Feitelson JS, Malpartida F, Hopwood DA (1985) Genetic and biochemical characterization of thered gene cluster ofStreptomyces coelicolor A3(2). J Gen Microbiol 131:2431–2441PubMedGoogle Scholar
  9. Gorst-Allman CP, Rudd BAM, Chang C-J, Floss HG (1981) Biosynthesis of actinorhodin. Determination of the point of dimerization. J Org Chem 46:455–456CrossRefGoogle Scholar
  10. Hopwood DA, Malpartida F, Kieser HM, Ikeda H, Duncan J, Fujii I, Rudd BAM, Floss HG, Ömura S (1985a) Production of ‘hybrid’ antibiotics by genetic engineering. Nature 314:642–644PubMedCrossRefGoogle Scholar
  11. Hopwood DA, Bibb MJ, Chater KF, Kieser T, Bruton CJ, Kieser HM, Lydiate DJ, Smith CP, Ward JM, Schrempf H (1985b) Genetic manipulation of streptomyces: a laboratory manual. John Innes Foundation, NorwichGoogle Scholar
  12. Hopwood DA, Malpartida F, Chater KF (1985c) Gene cloning to analyse the organization and expression of antibiotic biosynthesis genes inStreptomyces. In: Kleinkauf H, von Döhren H, Dornauer H, Nesemann G (eds) Regulation of secondary metabolite formation. Verlag Chemie, Weinheim, pp 23–33Google Scholar
  13. Ikeda H, Seno ET, Bruton CJ, Chater KF (1984) Genetic mapping, cloning and physiological aspects of the glucose kinase gene ofStreptomyces coelicolor. Mol Gen Genet 196:501–507PubMedCrossRefGoogle Scholar
  14. Kieser T (1984) Factors affecting the isolation of CCCDNA fromStreptomyces lividans andEscherichia coli. Plasmid 12:19–36PubMedCrossRefGoogle Scholar
  15. King AA, Chater KF (1986) The expression of theEscherichia coli locZ gene inStreptomyces. J Gen Microbiol 132:1739–1752PubMedGoogle Scholar
  16. Lederberg EM, Cohen SN (1972) Transformation ofSalmonella typhimurium by plasmid deoxyribonucleic acid. J Bacteriol 119:1072–1074Google Scholar
  17. Lomovskaya ND, Mkrtumian NM, Gostimskaya NL, Danilenko VN (1972) Characterisation of temperate actinophage C31 isolated fromStreptomyces coelicolor A3(2). J Virol 9:258–262PubMedGoogle Scholar
  18. Lydiate DJ, Malpartida F, Hopwood DA (1985) TheStreptomyces plasmid SCP2*: its functional analysis and development into useful cloning vectors. Gene 35:223–235PubMedCrossRefGoogle Scholar
  19. Malpartida F, Hopwood DA (1984) Molecular cloning of the whole biosynthetic pathway of aStreptomyces antibiotic and its expression in a heterologous host. Nature 309:462–464PubMedCrossRefGoogle Scholar
  20. Malpartida F, Zalacain M, Jimenez A, Davies J (1983) Molecular cloning and expression inStreptomyces lividans of a hygromycin B phosphotransferase gene fromStreptomyces hygroscopicus. Biochem Biophys Res Commun 117:6–12PubMedCrossRefGoogle Scholar
  21. Mizuno M, Chou MY, Inouye M (1984) A unique mechanism regulating gene expression: transplation inhibition by a complementary RNA transcript (micRNA). Proc Natl Acad Sci 81:1966–1970PubMedCrossRefGoogle Scholar
  22. Rodicio MR, Bruton CJ, Chater KF (1985) New derivatives of theStreptomyces temperate phage ϕC31 useful for the cloning and functional analysis ofStreptomyces DNA. Gene 34:283–292PubMedCrossRefGoogle Scholar
  23. Rodicio MR, Chater KF (1982) Small DNA-free liposomes stimulate transfection ofStreptomyces protoplasts. J Bacteriol 151:1078–1085PubMedGoogle Scholar
  24. Rudd BAM (1978) Genetics of Pigmented Secondary Metabolites inStreptomyces coelicolor. Ph.D. Thesis, University of East Anglia, NorwichGoogle Scholar
  25. Rudd BAM, Hopwood DA (1979) Genetics of actinorhodin biosynthesis byStreptomyces coelicolor A3(2). J Gen Microbiol 114:35–43PubMedGoogle Scholar
  26. Seno ET, Bruton CJ, Chater KF (1984) The glycerol utilization operon ofStreptomyces coelicolor: genetic mapping ofgyl mutations and the analysis of clonedgyl DNA. Mol Gen Genet 193:119–128PubMedCrossRefGoogle Scholar
  27. Smith CP (1985) Molecular biology of the glycerol operon ofStreptomyces coelicolor A3(2). Ph.D. Thesis, University of East Anglia, NorwichGoogle Scholar
  28. Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517PubMedGoogle Scholar
  29. Thompson CJ, Ward JM, Hopwood DA (1980) DNA cloning inStreptomyces: resistance genes from antibiotic-producing species. Nature 286:525–527PubMedCrossRefGoogle Scholar
  30. Thompson CJ, Ward JM, Hopwood DA (1982) Cloning of antibiotic resistance and nutritional genes in Streptomycetes. J Bacteriol 151:668–677PubMedGoogle Scholar
  31. Ward JM, Janssen, GR, Kieser T, Bibb MJ, Buttner MJ, Bibb MJ (1986) Construction and characterisation of a series of multi-copy promoter-probe plasmid vectors forStreptomyces using the aminoglycoside phosphotransferase gene from Tn5 as indicator. Mol Gen Genet 203:468–478PubMedCrossRefGoogle Scholar
  32. Westpheling J, Ranes M, Losick R (1985) RNA polymerase heterogeneity inStreptomyces coelicolor. Nature 31:22–27CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Francisco Malpartida
    • 1
  • David A. Hopwood
    • 1
  1. 1.John Innes InstituteNorwichUK

Personalised recommendations