Experimental Mechanics

, Volume 45, Issue 5, pp 451–456 | Cite as

Instantaneous phase-stepping interferometry using polarization imaging with a micro-retarder array

  • S. Yoneyama
  • H. Kikuta
  • K. Moriwaki


An instantaneous phase-stepping and subsequent phase analysis method, using a CCD camera with a form-birefringent micro-retarder array, is proposed for interferometry. An optical setup of a polarization interferometry using a Twyman-Green interferometer with two polarizers is constructed to analyze the distribution of out-of-plane displacement. Light emerging from the interferometer is recorded using a CCD camera that has micro-retarder array on the CCD plane. This micro-retarder array has four different principal directions. That is, an image obtained by the CCD camera contains four types of data corresponding to four different optical axes of the retarder. The four images separated from the image recorded by the CCD camera are reconstructed using gray-level interpolation. Then, the distributions of the Stokes parameters that represent the state of polarization are calculated from the four images. The phase distribution of the interference fringe pattern produced by the Twyman-Green interferometer is then obtained from these Stokes parameters. This method is applicable to time-dependent phenomena because multiple exposures are unnecessary for sufficient data acquisition in the completion of phase analysis.

Key Words

Instantaneous phase-stepping interferometry Twyman-Green interferometry out-of-plane displacement form-birefringence micro-retarder array polarization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Han, B., “Thermal Stresses in Microelectronics Subassemblies: Quantitative Characterization Using Photomechanics Method,” Journal of Thermal Stresses,26(6),583–613 (2003).Google Scholar
  2. 2.
    McKelvie, J., “Moiré Strain Analysis: An Introduction, Review and Critique, Including Related Techniques and Future Potential,” Journal of Strain Analysis for Engineering, Design,33(2),137–151 (1998).CrossRefGoogle Scholar
  3. 3.
    Gong, X.L. andToyooka, S., “Investigation Mechanism of Plastic Deformation by Digital Speckle Pattern Interferometry,” EXPERIMENTAL MECHANICS,39(1),25–29 (1999).CrossRefGoogle Scholar
  4. 4.
    Pfaff, R.D., Washabaugh, P.D., andKnauss, W.G., “An Interpretation of Twyman-Green Interferograms from Static and Dynamic Fracture Experiments,” International Journal of Solids and Structures,32(6–7)939–955 (1995).CrossRefGoogle Scholar
  5. 5.
    Smith, C.W. andKobayashi, A.S., “Experimental Fracture Mechanics,”Handbook on Experimental Mechanics, 2nd Edn., Kobayashi, A.S., ed., VCH Publishers, New York, 905–968 (1993).Google Scholar
  6. 6.
    Huntley, J.M., “Automated Fringe Pattern Analysis in Experimental Mechanics: A Review,” Journal of Strain Analysis for Engineering Design,33(2),105–125 (1998).CrossRefGoogle Scholar
  7. 7.
    Malacara, D., “Methods of Interferogram Analysis,”, Trends in Optical Non-destructive Testing and Inspection, Rastogi, P.K. and Inaudi, D., eds., Elsevier, Oxford, 15–35 (2000).Google Scholar
  8. 8.
    Surrel, Y., “Fringe Analysis,” Photomechanics, Rastogi, P.K., ed., Springer, Berlin, 55–102 (2000).Google Scholar
  9. 9.
    Patil, A. andRastogi, P., “Approaches in Generalized Phase Shifting Interferometry,” Optics and Lasers in Engineering,43(3–5),475–490 (2005).CrossRefGoogle Scholar
  10. 10.
    Morimoto, Y. andFujigaki, M., “Real-time Phase Distribution Analysis in Moiré”, Trends in Optical Non-destructive Testing and Inspection, Rastogi, P.K. and Inaudi, D., eds., Elsevier, Oxford, 415–432 (2000).Google Scholar
  11. 11.
    Fujigaki, M., Morimoto, Y., andYabe, M., “Real-time Measurement of Nanometer Displacement Distribution by Integrated Phase-shifting Method,” JSME International Journal, Series A,45(3),448–452 (2002).CrossRefGoogle Scholar
  12. 12.
    Yamamoto, Y., Morimoto, Y., Fujigaki, M., and Yoneyama, S., “Two-directional Phase-shifting Moiré Interferometry and Its Application to Thermal Deformation Measurement of Electromic Device”, Proceedings of the 6th Far-East Conference on Non-Destructive Testing, Japanese Society for Non-Destructive Inspection, Tokyo, 445–450 (2002).Google Scholar
  13. 13.
    Yoneyama, S., Morimoto, Y., Nomura, T., Fujigaki, M. andMatsui, R., Real-time Analysis of Isochromatics and Isoclinics Using the Phaseshifting Method”, EXPERIMENTAL MECHANICS,43(1),83–89 (2003).Google Scholar
  14. 14.
    Yoneyama, S., Morimoto, Y., andMatsui, R., “Photoelastic Fringe Pattern Analysis by Real-time Phase-shifting Method”, Optics and Lasers in Engineering,39(1),1–13 (2003).CrossRefGoogle Scholar
  15. 15.
    Smythe, R. andMoore, R., “Instantaneous Phase Measuring Interferometry,” Optical Engineering,23(4),361–364 (1984).Google Scholar
  16. 16.
    Koliopoulos, C.L., “Simultaneous Phase Shift Interferometer”, Advanced Optical Manufacturing and Testing II, Victor, J. and Doherty, D.V.M., eds. Proceedings of SPIE,1531,119–127 (1991).CrossRefGoogle Scholar
  17. 17.
    Van Haasteren, A.J.P. andFrankena, H.J., “Real-time Displacement Measurement Using a Multicamera Phase-stepping Speckle Interferometer,” Applied Optics,33(19),4137–4142 (1994).CrossRefGoogle Scholar
  18. 18.
    Ngoi, B.K.A., Venkatakrishnan, K., Sivakumar, N.R., andBo, T., “Instantaneous Phase Shifting Arrangement for Microsurface Profiling of Flat Surfaces,” Optical Communications,190(1–6),109–116 (2001).CrossRefGoogle Scholar
  19. 19.
    Sivakumar, N.R., Hui, W., Venkatakrishman, K., andNgoi, B.K.A., “Large Surface Profile Measurement with Instantaneous Phase-shifting Interferometry,” Optical Engineering,42(2),367–372 (2003).CrossRefGoogle Scholar
  20. 20.
    Onuma, K., Nakamura, T., andKuwashima, S., “Development of New Real-time Phase-shift Interferometry for the Investigation of Crystal Growth Kinetics,” Journal of Crystal Growth,167(1–2),387–390 (1996).CrossRefGoogle Scholar
  21. 21.
    Astrakharchik-Farrimond, E., Shekunov, B.Y., York, P., Sawyer, N.B.E., Morgan, S.P., Somekh, M.G., andSee, C.W., “Dynamic Measurements in Supercritical Flow Using Instantaneous Phase-shift Interferometry,” Experiments in Fluids,33(2),307–314 (2002).Google Scholar
  22. 22.
    Azzam, R.M.A. andBashara, N.M., Ellipsometry and Polarized Light, Elsevier, Amsterdam (1977).Google Scholar
  23. 23.
    Barter, J.D., Thompson, H.R. Jr., andChristine, L.R., “Visible-regime Polarimetric Imager: A Fully Polarimetric Real-time Imaging System,” Applied Optics,42(9),1620–1628 (2003).Google Scholar
  24. 24.
    Kikuta, H., Toyota, H., andYu, W., “Optical Elements with Subwavelength Structured Surfaces,” Optical Review,10(2),63–73 (2003).CrossRefGoogle Scholar
  25. 25.
    Kikuta, H., Haccho, H., Iwata, K., Hamamoto, T., Toyota, H., andYotsuya, T., “Real-time Polarimeter with a Form-birefringent Micro Retarder Array,” Optical Engineering for Sensing and Nanotechnology, Iwata, K., ed., Proceedings of SPIE4416,19–22 (2001).CrossRefGoogle Scholar
  26. 26.
    Gonzaler, R.C. andWoods, R.E., Digital Image Processing, 2nd Edn., Prentice-Hall, Englewood Cliffs, NJ (2002).Google Scholar
  27. 27.
    Theocaris, P.S. andGdoutos, E.E., Matrix Theory of Photoelasticity, Springer, New York (1979).Google Scholar
  28. 28.
    Sabatke, D.S., Descour, M.R., Dereniak, E.L., Sweatt, W.G., Kemme, S.A., andPhipps, G.S., “Optimization of Retardance for a Complete Stokes Polarimeter,” Optics Letters,25(11),802–804 (2000).Google Scholar

Copyright information

© Society for Experimental Mechanics 2005

Authors and Affiliations

  • S. Yoneyama
    • 1
  • H. Kikuta
    • 1
  • K. Moriwaki
    • 2
  1. 1.Department of Mechanical EngineeringOsaka Prefecture UniversitySakai, OsakaJapan
  2. 2.Applied Optics and Measurement Research GroupTechnology Research Institute of Osaka PrefectureIzumi, OsakaJapan

Personalised recommendations