Experimental Mechanics

, Volume 44, Issue 3, pp 235–240 | Cite as

Plotting isoclinics for hybrid photoelasticity and finite element analysis

  • M. Ragulskis
  • L. Ragulskis


Displacement-based finite element method formulations are coupled with stress-based photoelasticity analysis. As the stress field is discontinuous at the interelement boundaries, the introduced smoothing procedure enables the generation of high-quality digital images acceptable for hybird experimental-numerical techniques. The proposed methods are applicable for the analysis of static and dynamic results of experimental photoelasticity.


Photoelasticity finite element analysis isoclinics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Asundi, A., and Sajan M.R., “Multiple LED Camera for Dynamic Photoelasticity”, Applied Optics,34 (13), 2236–2240 (1995).CrossRefGoogle Scholar
  2. 2.
    Asundi, A. and Sajan, M.R., “A Low Cost Digital Polariscope for Dynamic Photoelasticity,” Optical Engineering,33, 3052–3055 (1994).CrossRefGoogle Scholar
  3. 3.
    Pacey, M.N., Haake, S.J. and Patterson, E.A., “A Novel Instrument for Automated Principal Strain Separation in Reflection Photoelasticity,” Journal of Testing and Evaluation,28 (4), 229–235 (2000).Google Scholar
  4. 4.
    Timoshenko, S.P., and Goodier, J.N., Theory of Elasticity. Nauka, Moscow (1975).Google Scholar
  5. 5.
    Dally, J.W. and Riley, W.F., Experimental Stress Analysis. McGraw-Hill, New York (1991).Google Scholar
  6. 6.
    Su, X.Y. Asundi, A., and Sajan, M.R. “Phase Unwrapping in Photoelasticity”, ICEM'96—Advances and Applications. Singapore (1996).Google Scholar
  7. 7.
    Soifer, V.A., “Computer Processing of Images,” Herald of the Russian Academy of Sciences,71, (2) 119–129 (2001).Google Scholar
  8. 8.
    Holstein, A., Salbut, L., Kujawinska, M., and Juptner, W., “Hybrid Experimental-Numerical Concept of Residual Stress Analysis in Laser Weldments,” EXPERIMENTAL MECHANICS,41 (4), 343–350 (2001).CrossRefGoogle Scholar
  9. 9.
    Segerlind, L.J., Applied Finite Element Analysis, Mir, Moscow (1979).Google Scholar
  10. 10.
    Zienkiewicz, O.C. and Morgan, K., Finite Elements and Approximation, Mir Moscow (1986).Google Scholar
  11. 11.
    Bathe, K.J., Finite Element Procedures in Engineering Analysis. Prentice-Hall, Englewood Cliffs, NJ (1982).Google Scholar
  12. 12.
    Ramesh, K. and Pathak, P.M., “Role of Photoelasticity in Evolving Discretization Schemes for FE Analysis,” Experimental Techniques,23, (4), 36–38 (1999).Google Scholar
  13. 13.
    Atluri, S.N., Gallagher, R.H., and Zienkiewicz, O.C., editors, Hybrid and Mixed Finite Element Methods. Wiley New York (1983).zbMATHGoogle Scholar
  14. 14.
    Ragulskis, M., Maskeliunas, R., and Ragulskis, L. “Plotting Moire Fringes for Circular Structures from FEM Results,” Experimental Techniques.26 (1), 31–35 (2002).CrossRefGoogle Scholar
  15. 15.
    Ragulskis M, Palevicius, A, and Ragulskis, L., “Plotting Holographic Interferograms for Visualization of Dynamic Results From Finite Element Calculations” International Journal for Numerical Methods in Engineering,56 (11), 1647–1659 (2003).CrossRefzbMATHGoogle Scholar

Copyright information

© Society for Experimental Mechanics 2004

Authors and Affiliations

  • M. Ragulskis
    • 1
  • L. Ragulskis
    • 2
  1. 1.Department of Mathematical Research in SystemsKaumas University of TechnologyKaunasLithuania
  2. 2.Department of InformaticsVytamas Magnus UniversityKaumasLithuania

Personalised recommendations