Advertisement

Current Genetics

, Volume 13, Issue 6, pp 461–469 | Cite as

Yeast cell viability under conditions of high temperature and ethanol concentrations depends on the mitochondrial genome

  • Juan Jiménez
  • Tahía Benítez
Original Articles

Summary

Wine yeasts manifest simultaneously a high tolerance to ethanol, thermotolerance, and a high resistance to the mutagenic effects of ethanol on the mitochondrial genome. The transfer of mitochondria from these strains to laboratory yeasts demonstrate that this genome influences the above parameters, since thermotolerance, ethanol-growth tolerance, and the frequency ofrho mutants were either totally or partially modified in the laboratory recipient strain. When the death rate and the rate of formation ofrho mutants were measured under extreme conditions of inhibitory ethanol concentrations and high temperature, a perfect correlation was found between these parameters, and both of them were dependent on the strain of mitochondrial genome. Thus, the transfer of wine yeast mitochondria leads to a lower death rate, and a simultaneous increase in thermotolerance and ethanol tolerance in the recipient strain. These results demonstrate the role that viability plays under conditions of high temperatures and high ethanol concentrations. The greater stability of therho + phenotype shown by the wine yeast mitochondrial genome may be responsible for the increased viability conferred by these mitochondria.

Key words

rho mutants Wine yeast mitochondria Cell viability Ethanol-tolerance Thermotolerance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aguilera A, Benítez T (1985) Arch Microbiol 142:389–392PubMedCrossRefGoogle Scholar
  2. Aguilera A, Benítez T (1986) Arch Microbiol 143:337–344PubMedCrossRefGoogle Scholar
  3. Bacila M, Horii J (1978) In: Bacila M, Horecker BL, Stoppani AOM (eds) Biochemistry and genetics of yeasts. Academic Press, London, pp 121–130Google Scholar
  4. Bandas EL, Zakharov IA (1980) Mutat Res 71:193–199PubMedGoogle Scholar
  5. Benítez T, del Castillo L, Aguilera A, Conde J, Cerde-Olmedo E (1983) Appl Environ Microbiol 45:1429–1436PubMedGoogle Scholar
  6. Brown SW, Sugden DA, Oliver SG (1984) J Chem Technol Biotechnol 34B:116–120Google Scholar
  7. Cabeça-Silva C, Madeira Lopes A, van Uden N (1982) FEMS Microbiol Lett 15:149–151CrossRefGoogle Scholar
  8. Casey GP, Ingledew WM (1986) Crit Rev Microbiol 13:219–280PubMedGoogle Scholar
  9. Conde J, Fink GR (1976) Proc Natl Acad Sci USA 73:3651–3655PubMedCrossRefGoogle Scholar
  10. Evans RJ, Clark-Walker GD (1985) Genetics 111:405–432Google Scholar
  11. Evans RJ, Oakley KM, Clark-Walker GD (1985) Genetics 111:389–402PubMedGoogle Scholar
  12. Foury F, Kolodynski J (1983) Proc Acad Sci USA 80:5345–5349CrossRefGoogle Scholar
  13. Ingram LO, Buttke TM (1984) Adv Microbiol Physiol 25:254–296Google Scholar
  14. Ismail AA, Ali AMM (1971) Folia Microbiologica 16:350–354PubMedCrossRefGoogle Scholar
  15. Jiménez J, Benítez T (1986) Appl Microbiol Biotechnol 25:150–154CrossRefGoogle Scholar
  16. Jiménez J, Benítez T (1987) Curr Genet 12:421–428CrossRefGoogle Scholar
  17. Kusano T, Steinmetz D, Hendrickson WG, Murchie J, King M, Benson A, Schaechter M (1984) J Bacteriol 158:313–316PubMedGoogle Scholar
  18. López-Calderón I, Cerdá-Olmedo E (1983) Mutat Res 108:133–146Google Scholar
  19. Myers AM, Pape LK, Tzagoloff A (1985) EMBO J 4:2087–2092PubMedGoogle Scholar
  20. Nagley P, Linnane AW (1978) Biochem Biophys Res Comun 85:585–592CrossRefGoogle Scholar
  21. Pirt ST (1975) Principles of microbe and cell cultivation. Blackwell, OxfordGoogle Scholar
  22. Santa María J, Vidal D (1973) J Bacteriol 113:1078–1080PubMedGoogle Scholar
  23. Sherman F, Fink GR, Lawrence CW (1979) Methods in yeast genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, New YorkGoogle Scholar
  24. van Uden N (1984) Adv Microbiol Physiol 25:195–248Google Scholar
  25. Zamaroczy M, Faugeron-Fonty G, Bernardi G (1983) Gene 21:193–202PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Juan Jiménez
    • 1
  • Tahía Benítez
    • 1
  1. 1.Departamento de Genética, Facultad de BiologíaUniversidad de SevillaSevillaSpain

Personalised recommendations