Advertisement

Biochemical Genetics

, Volume 29, Issue 11–12, pp 559–576 | Cite as

Gene expression patterns in the black blowfly (Phormia regina) as revealed by two-dimensional electrophoresis of proteins. I. Developmental stage-specific and sex-specific differences

  • Harold H. Harrison
  • Dennis J. Joslyn
Article
  • 19 Downloads

Abstract

The black blowfly,Phormia regina, has been implicated in human myiasis and as a contact vector of viral and bacterial diseases present in carrion to which female flies are attracted for egg deposition. Inbred strains ofP. regina are an excellent model system for studying gene expression in the developmental stages of such holometabolous dipteran parasites. However, information regarding gene and protein expression patterns inP. regina is limited. We used ISO-DALT high-resolution, two-dimensional electrophoresis with silver staining to establish fundamental protein maps for examination of the stage-specific gene expression patterns in the 615 most abundant proteins of the eggs, first- and third-instar larvae, pupae, and male and female adults. We also used a differential extraction technique to identify the major cuticular proteins of the adults. The results show 48 clearly identifiable stage-specific and sex-specific proteins. Thus, approximately 8% of the most abundant proteins exhibit developmental changes. These analyses serve as an initial data base for further studies of ontogenetic regulation, organellar origin, and physiologic function of the stage-specific proteins in the life cycle of these opportunistically parasitic dipterans.

Key words

Phormia regina two-dimensional electrophoresis myiasis protein indexing ontogenetic variation insect vectors dipterans 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexis, J. B., and Mittleman, R. E. (1988). An unusual case ofPhormia regina myiasis of the scalp.Am. J. Clin. Pathol. 90734.PubMedGoogle Scholar
  2. Ali-Khan, F. E., and Ali-Khan, Z. (1975). A case of traumatic dermal myiasis in Quebec caused byPhormia regina (Meigen) (Diptera: Calliphoridae).Can. J. Zool. 531470.CrossRefGoogle Scholar
  3. Anderson, N. G., and Anderson, N. L. (1982). The human protein index.Clin. Chem. 28739.PubMedGoogle Scholar
  4. Anderson, N. L., and Anderson, N. G. (1977). High resolution two-dimensional electrophoresis of human plasma proteins.Proc. Natl. Acad. Sci. USA 745421.PubMedGoogle Scholar
  5. Anderson, N. L., and Anderson, N. G. (1984). Some perspectives on two-dimensional protein mapping.Clin. Chem. 301898.PubMedGoogle Scholar
  6. Anderson, N. L., and Hickman, B. J. (1979). Analytical techniques for cell fractions. XXIV. Isoelectric point standards for two-dimensional electrophoresis.Anal. Biochem. 93312.PubMedGoogle Scholar
  7. Anderson, N. L., Giometti, C. S., Gemmell, M. A., and Macy, M. A. (1984a). Protein variants in cells: Enumeration by protein indexing.Ann. N.Y. Acad. Sci. 428134.PubMedGoogle Scholar
  8. Anderson, N. L., Hofmann, J. P., Gemmell, M. A., and Taylor, J. (1984b). Global approaches to quantitative analysis of gene expression patterns observed by use of two-dimensional electrophoresis.Clin. Chem. 281807.Google Scholar
  9. Anderson, N. L., Tracy, R. P., and Anderson, N. G. (1984c). High resolution two-dimensional electrophoretic mapping of plasma proteins. In Putnam, F. (ed.),The Plasma Proteins 2nd ed., Academic Press, New York, pp. 221–270.Google Scholar
  10. Bauer, A. C., and Levenbook, L. (1969). Fructose diphosphate aldolase during growth and development of the blowflyPhormia regina (Meigen).Comp. Biochem. Physiol. 28619.PubMedCrossRefGoogle Scholar
  11. Beaver, P. C., Jung, R. C., and Cupp, E. W. (1984). Filth flies and myiasis-producing flies. InClinical Parasitology 9th ed., Lea & Febiger, Philadelphia, p. 693.Google Scholar
  12. Bedian, V., Summers, M. C., and Kauffman, S. A. (1988). Changes in protein synthetic activity in earlyDrosophila embryos mutant for the segmentation geneKruppel.Dev. Genet. 9699.PubMedCrossRefGoogle Scholar
  13. Chen, P. S., and Levenbook, L. (1966). Studies on the haemolymph proteins of the blowflyPhormia regina. I. Changes in ontogenetic patterns.J. Insect Physiol. 121595.PubMedCrossRefGoogle Scholar
  14. Chen, P. S., Kubli, E., and Hanimann, F. (1968). Auftrennung der freien ninhydrin-positiven stoffe inPhormia undDrosophila mittels zweidimensionaler hochspannung-selektrophorese.Rev. Suisse Zool. 75509.PubMedGoogle Scholar
  15. Clegg, J. S., and Evans, D. R. (1961). The physiology of blood trehalase and its function during flight in the blowfly.J. Exp. Biol. 38771.Google Scholar
  16. Coulthart, M. B., and Singh, R. S. (1988a). Low genic variation in male-reproductive-tract proteins ofDrosophila melanogaster andD. simulans.Mol. Biol. Evol. 5167.PubMedGoogle Scholar
  17. Coulthart, M. B., and Singh, R. S. (1988b). Differing amounts of genetic polymorphism in testes and male accessory glands ofDrosophila melanogaster andDrosophila simulans.Biochem. Genet. 26153.PubMedCrossRefGoogle Scholar
  18. Daufeldt, J. A., and Harrison, H. H. (1984). Quality control and technical outcome of high resolution two-dimensional electrophoresis in a clinical laboratory setting.Clin. Chem. 301972.PubMedGoogle Scholar
  19. Fleming, J. E., Melnikoff, P. S., and Bensch, K. G. (1984). Identification of mitochondrial proteins on two-dimensional electrophoresis gels of extracts of adultDrosophila melanogaster.Biochim. Biophys. Acta 802340.Google Scholar
  20. Fleming, J. E., Quattrocki, E., Latter, G., Miguel, J., Marcuson, R., Zuckerkandl, E., and Bensch, K. G. (1986). Age-dependent changes in proteins ofDrosophila melanogaster.Science 2311157.PubMedGoogle Scholar
  21. Friedman, S. (1960a). The purification and properties of trehalase isolated fromPhormia regina Meigen.Arch. Biochem. Biophys. 87252.PubMedCrossRefGoogle Scholar
  22. Friedman, S. (1960b). Occurrence of trehalase-6-phosphatase inPhormia regina Meigen.Arch. Biochem. Biophys. 88339.PubMedCrossRefGoogle Scholar
  23. Friedman, S. (1961). Inhibition of trehalase activity in the hemolymph ofPhormia regina.Arch. Biochem. Biophys. 93550.PubMedCrossRefGoogle Scholar
  24. Gemmell, M. A., and Anderson, N. L. (1982). Lymphocyte, monocyte, and granulocyte proteins compared by use of two-dimensional electrophoresis.Clin. Chem. 271062.Google Scholar
  25. Giometti, C. S., and Anderson, N. L. (1984). Tropomyosin heterogeneity in human cells.J. Biol. Chem. 25914113.PubMedGoogle Scholar
  26. Giometti, C. S., Danon, M. J., and Anderson, N. G. (1983). Human muscle proteins: Analysis by two-dimensional electrophoresis.Neurology 331152.PubMedGoogle Scholar
  27. Giometti, C. S., Gemmell, M. A., Nance, S. L., Tollaksen, S. L., and Taylor, J. (1987). Detection of heritable mutations in protein expression.J. Biol. Chem. 26212764.PubMedGoogle Scholar
  28. Goldenthal, M. J., McKenna, K. A., and Joslyn, D. J. (1991). The mitochondrial DNA (mtDNA) of the blowflyPhormia regina: Restriction map and gene localization.Biochem. Genet. 291.PubMedCrossRefGoogle Scholar
  29. Green, L. A. D., Kaplan, M. P., and Liem, R. K. H. (1991). Kinesin heavy chain from bovine brain andDrosophila appear to be highly homologous molecules.J. Neurosci. Res. 28151.PubMedCrossRefGoogle Scholar
  30. Guevara, J., Johnston, D. A., Ramagli, L. S., Martin, B. A., Capetillo, S., and Rodriguez, L. V. (1982). Quantitative aspects of silver deposition in proteins resolved in complex polyacrylamide gels.Electrophoresis 3197.CrossRefGoogle Scholar
  31. Gutzeit, H. O., and Gehring, W. J. (1979). Localized synthesis of specific proteins during oogenesis and early embryogenesis inDrosophila melanogaster.Wilhelm Roux Arch. 187151.CrossRefGoogle Scholar
  32. Hall, R. D., Anderson, P. C., and Clark, D. P. (1986). A case of human myiasis caused byPhormia regina.J. Med. Entomol. 23578.PubMedGoogle Scholar
  33. Harrison, H. H. (1984). Improved record keeping and photography of silver-stained two-dimensional electrophoretograms by way of “XRD images.”Clin. Chem. 301981.PubMedGoogle Scholar
  34. Hudson, A. (1958). The effect of flight on the taste threshold and carbohydrate utilization ofPhormia regina Meigen.J. Insect Physiol. 1293.CrossRefGoogle Scholar
  35. Hurlimann, R., and Chen, P. S. (1974). Ontogenetische veranderungen des enzymmusters in der haemolymphe vonPhormia regina.Rev. Suisse Zool. 81648.PubMedGoogle Scholar
  36. Imajoh, S. (1981). Application of two-dimensional electrophoresis to the analysis of speciation inAnopheles hyrcanus complex.Seikagaku (Biochemistry) 53159.Google Scholar
  37. Kim, B. K. (1988). Phylogenetic relationships of the seven species of theDrosophila auraria complex by two-dimensional electrophoresis.Korean J. Genet. 1077.Google Scholar
  38. Kingan, T. G., and Hildebrand, J. G. (1989). Sexually dimorphic polypeptides in developing antennal sensory neurons of an insect.J. Neurosci. 91951.PubMedGoogle Scholar
  39. Kominz, D. R., Maruyama, K., Levenbook, L., and Lewis, M. (1962). Tropomyosin, myosin, and actin from the blowfly,Phormia regina.Biochim. Biophys. Acta 63106.PubMedCrossRefGoogle Scholar
  40. Lee, C. Y., Charles, D., Bronson, D., Griffin, M., and Bennett, L. (1979). Analysis of mouse andDrosophila proteins by two-dimensional gel electrophoresis.Mol. Gen. Genet. 176303.PubMedCrossRefGoogle Scholar
  41. Lee, T. J., and Park, J. W. (1990). Genetic relationships among the five species of the subgenusHirtodrosophila genusDrosophila.Genetica 1271.Google Scholar
  42. Levenbook, L., Bauer, A. C., and Shigematsu, H. (1973). Fructose diphosphate aldolase during growth and development of the blowfly,Phormia regina (Meigen). III. Physicochemical comparison of the larval and adult muscle enzymes.Arch. Biochem. Biophys. 157615.CrossRefGoogle Scholar
  43. MacConkey, E. H., Taylor, B. J., and Phan, D. (1979). Human heterozygosity: A new estimate.Proc. Natl. Acad. Sci. USA 767951.Google Scholar
  44. Marmaras, V. J., and Tsakas, S. (1988). Temporally regulated protein synthesis in cultured haemocytes of the Mediterranean fruit flyCeratitis capitata during larval and prepupal development: Internalization of larval serum proteins into the haemocytes.Dev. Biol. 129294.PubMedCrossRefGoogle Scholar
  45. Matthews, K. A., Miller, D. F. B., and Kaufman, T. C. (1989). Developmental distribution of RNA and protein products of theDrosophila α-tubulin gene family.Dev. Biol. 13245.PubMedCrossRefGoogle Scholar
  46. Miller, S. G., and Huettel, M. D. (1986). Mitochondrial biogenesis during spermatogenesis inHeliothis virescens, H. sublflexa, and their male-sterile backcross hybrids.Arch. Insect Biochem. Physiol. 3363.CrossRefGoogle Scholar
  47. Mogami, K., Fujita, S. C., and Hotta, Y. (1982). Identification ofDrosophila indirect flight muscle myofibrillar proteins by means of two-dimensional electrophoresis.J. Biochem. 91643.PubMedGoogle Scholar
  48. Nash, W. G., Kumerow, H. N., and Merril, C. R. (1983). Identification of aYellow gene-specific protein inDrosophila melanogaster by two-dimensional electrophoresis.Biochem. Genet. 211135.PubMedCrossRefGoogle Scholar
  49. Neel, J. V., Baier, L., and Hanash, S. M. (1985). Frequency of polymorphisms for alleles encoding for liver proteins of domesticated mice.J. Hered. 76314.PubMedGoogle Scholar
  50. O'Farrell, P. H. (1975). High resolution two-dimensional electrophoresis of proteins.J. Biol. Chem. 2504007.PubMedGoogle Scholar
  51. Ramagli, L. S., Womack, J. E., and Rodriguez, L. V. (1990). Genetic analysis of nonhistone chromosomal protein inheritance in recombinant inbred mouse strains using two-dimensional electrophoresis.Biochem. Genet. 28123.PubMedCrossRefGoogle Scholar
  52. Ramesh, S. R., and Kalisch, W. E. (1988). Taxonomic identification ofDrosophila nasuta subgroup strains by glue protein analysis.Genetica 7863.PubMedCrossRefGoogle Scholar
  53. Rosenblum, B. B., Neel, J. V., Hanash, S. M., Joseph, J. L., and Yew, N. (1984). Identification of genetic variants in erythrocyte lysate by two-dimensional electrophoresis.Am. J. Hum. Genet. 36601.PubMedGoogle Scholar
  54. Sakoyama, Y., and Okubo, S. (1981). Two-dimensional gel patterns of protein species during development ofDrosophila embryos.Dev. Biol. 81361.PubMedCrossRefGoogle Scholar
  55. Santaren, J. F. (1990). Towards establishing a protein database ofDrosophila.Electrophoresis 11254.PubMedCrossRefGoogle Scholar
  56. Santaren, J. F., and Garcia-Bellido, A. (1990). High-resolution two-dimensional gel analysis of proteins in wing imaginal discs: A database ofDrosophila.Exp. Cell Res. 189169.PubMedCrossRefGoogle Scholar
  57. Seaquist, E. R., Henry, T. R., Cheong, E., and Theologides, D. (1983).Phormia regina myiasis in a malignant wound.Minn. Med. 66409.PubMedGoogle Scholar
  58. Shymala, B. V., and Ranganath, H. A. (1990). Biochemical phylogeny of seven Indian species of theMontium subgroup ofDrosophila.Genetica 8171.CrossRefGoogle Scholar
  59. Silvert, D. J., Doctor, J., Quesada, L., and Fristrom, J. W. (1984). Pupal and larval cuticle proteins ofDrosophila melanogaster.Biochemistry 235767.PubMedCrossRefGoogle Scholar
  60. Spicer, G. S. (1988). Molecular evolution among someDrosophila species groups as indicated by two-dimensional electrophoresis.J. Mol. Evol. 27250.PubMedCrossRefGoogle Scholar
  61. Takai, K., and Kanda, T. (1986). Phylogenetic relationships among theAnopheles hyrcanus species group based on the degree of hybrid development and comparison with phylogenies by other methods.Jpn. J. Genet. 61295.Google Scholar
  62. Takana-Ohmuro, H., Hirose, G., and Mikawa, T. (1983). Separation and identification ofDrosophila myosin light chains.J. Biochem. 211135.Google Scholar
  63. Tanaka, Y., Maruyama, K., Mikawa, T., and Hotta, Y. (1988). Identification of calcium binding proteins in two-dimensional gel electrophoretic patterns ofDrosophila thorax and their distribution in two types of muscle.J. Biochem. 104489.PubMedGoogle Scholar
  64. Thorsrud, A. K., Vatn, M. H., and Jellum, E. (1982). Two-dimensional electrophoretic patterns of proteins of normal mucosa, polyps, and carcinomas of the large intestine.Clin. Chem. 28884.PubMedGoogle Scholar
  65. Tollaksen, S. L., Anderson, N. L., and Anderson, N. G. (1984).Operation of the ISO-DALT System 7th ed., U.S. Dept. Energy Publ. ANL-BIM-84-1, Argonne Natl. Lab., 9700 South Cass Avenue, Argonne, IL 60439.Google Scholar
  66. Trumbly, R. J., and Jarry, B. (1983). Stage-specific protein synthesis during early embryogenesis inDrosophila melanogaster.EMBO J. 21281.PubMedGoogle Scholar
  67. Tsai, Y. C., Harrison, H. H., Lee, C., Daufeldt, J. A., Oliver, L., and Grayhack, J. T. (1984). Systematic characterization of human prostatic fluid proteins with two-dimensional electrophoresis.Clin. Chem. 302026.PubMedGoogle Scholar
  68. Walton, K. E., Styer, D., and Gruenstein, E. I. (1984). Genetic polymorphism in normal human fibroblasts as analyzed by two-dimensional polyacrylamide electrophoresis.J. Biol. Chem. 2547951.Google Scholar
  69. Westerbrink, K., Havsteen, B., and Groenier, K. (1983). Numerical taxonomy of two-dimensional protein maps: A rational approach to tumor characterization. In Stathakos, D. (ed.),Electrophoresis ′82 Walter de Gruyter, Berlin, pp. 423–433.Google Scholar
  70. Willard, K. E., and Anderson, N. G. (1981). Two-dimensional analysis of human lymphocyte proteins. I. An assay for lymphocyte effectors.Clin. Chem. 271327.PubMedGoogle Scholar
  71. Young, D. A. (1984). Advantages of separations on “giant” two-dimensional gels for detection of physiologically relevant changes in the expression of protein gene-products.Clin. Chem. 302104.PubMedGoogle Scholar
  72. Zebe, E. (1958). Studies on glycolytic enzymes in insect muscle.Int. Congr. Entomol. Montreal 2371.Google Scholar
  73. Zuckerkandl, E. (1986). Quantitative protein profiling: Determining lexotypes.J. Theoret. Biol. 121185.Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • Harold H. Harrison
    • 1
  • Dennis J. Joslyn
    • 2
  1. 1.Department of PathologyThe University of Chicago Pritzker School of MedicineChicago
  2. 2.Department of BiologyRutgers University at CamdenCamden

Personalised recommendations