Intensive Care Medicine

, Volume 21, Issue 1, pp 84–93

Maintaining blood flow in the extracorporeal circuit: haemostasis and anticoagulation

  • A. R. Webb
  • M. G. Mythen
  • D. Jacobson
  • I. J. Mackie
Review Article

Abstract

Objectives

To review the methods and developments in maintaining extracorporeal circuits in critically ill patients.

Design

The review includes details of the pathophysiological processes of haemostasis and coagulation in critically ill patients, methods of maintaining blood flow in the extracorporeal circuit and methods of monitoring anticoagulation agents used.

Setting

Information is relevant to the management of critically ill patients requiring extracorporeal renal and respiratory support and cardiopulmonary bypass.

Conclusions

Heparin is the mainstay of anticoagulation for the extracorporeal circuit although the complex abnormalities of the coagulation system in critically ill patients are associated with a considerable risk of bleeding. Alternative therapeutic agents and physical strategies (prostacyclin, low molecular weight heparin, sodium citrate, regional anticoagulation, heparin bonding and attention to circuit design) may reduce the risk of bleeding but expense and difficulty in monitoring are disadvantages.

Key words

Extracorporeal circuits Anticoagulation Haemostasis Heparin Prostacyclin Citrate Aprotinin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hellgren M, Egberg N, Eklund J (1984) Blood coagulation and fibrinolytic factors and their inhibitors in critically ill patients. Intensive Care Med 10:23–28PubMedCrossRefGoogle Scholar
  2. 2.
    Colman RW, Walsh PN (1987) Mechanisms of platelet aggregation. In: Colman RW, Hirsh, J, Marder VJ, Salzman EW (eds) Haemostasis and thrombosis. Lippincott, Philadelphia, pp 594–605Google Scholar
  3. 3.
    Holmsen H (1987) Platelet secretion. In: Colman RW, Hirsh J, Marder VJ, Salzman EW (eds) Haemostasis and thrombosis. Lippincott, Philadelphia, pp 606–617Google Scholar
  4. 4.
    Sixma JJ (1987) Role of blood platelets, plasma proteins and the vessel wall haemostasis. In: Bloom AL, Thomas, DP (eds) Haemostasis and thrombosis. Churchill Livingstone, Edinburgh, pp 283–302Google Scholar
  5. 5.
    Walsh PN (1982) The effects of collagen and kaolin on the intrinsic coagulant activities of platelets: evidence of an alternative pathway in intrinsic pathway in coagulation not requiring factor XII. Br J Haematol 22:393–405Google Scholar
  6. 6.
    Zur M, Nemerson Y (1981) Tissue factor pathways of blood coagulation. In: Bloom AL, Thomas DP (eds) Haemostasis and thrombosis, Churchill Livingstone, Edinburgh, pp 124–139Google Scholar
  7. 7.
    Schmaier AH, Silverberg M, Kaplan AP, Colman RW (1987) Contact activation and its abnormalities. In: Colman RW, Hirsh, J, Marder VJ, Salzman EW (eds) Hemostasis and thrombosis. Lippincott, Philadelphia, pp 18–38Google Scholar
  8. 8.
    Kaplan AP, Meier HL, Mandle RJ (1976) The Hageman factor dependent pathways of coagulation, fibrinolysis, and kinin generation. Semin Thromb Hemost 3:1–26PubMedGoogle Scholar
  9. 9.
    de Agostini A, Lijnen HR, Pixley RA, Colman RW, Schapira M (1984) Inactivation of factor XII active fragment in normal plasma. Predominant role of C1-INH. J Clin Invest 73:1542–1549PubMedGoogle Scholar
  10. 10.
    Harpel PC (1987) Blood proteolytic enzyme inhibitors: their role in modulating blood coagulation and fibrinolytic enzyme pathways. In: Colman RW, Hirsh J, Marder VJ, Salzman EW (eds) Haemostasis and thrombosis. Lippincott, Philadelphia, pp 219–234Google Scholar
  11. 11.
    Owen WG, Esmon CT (1981) Functional properties of an endothelial cell cofactor for thrombin-catalyzed activation of protein C. J Biol Chem 256:5532–5535PubMedGoogle Scholar
  12. 12.
    Rao LV, Rapaport SI, Bajaj SP (1986) Activation of human factor VII in the initiation of tissue factor-dependent coagulation. Blood 68:685–691PubMedGoogle Scholar
  13. 13.
    Oohira A, Wight TN, Bornstein P (1983) Sulfated proteoglycans synthesized by vascular endothelial cells in culture. J Biol Chem 258:2014–2021PubMedGoogle Scholar
  14. 14.
    Marcum JA, Rosenberg RD (1987) Anticoagulantly active heparin sulfate proteoglycan and the vascular endothelium. Semin Thromb Hemost 13:464–474PubMedGoogle Scholar
  15. 15.
    Bevilacqua MP, Pober JS, Majeau GR, Cotran RS, Gimbrone MA (1984) Interleukin 1 (IL-1) induces biosynthesis and cell surface expression of procoagulant activity in human endothelial cells. J Exp Med 160:618–623PubMedCrossRefGoogle Scholar
  16. 16.
    Bevilacqua MP, Pober JS, Majeau GR, Fiers W, Cotran S, Gimbrone MA (1986) Recombinant tumor necrosis factor induces procoagulant activity in cultured human vascular endothelium: characterization and comparison with actions of interleukin 1. Proc Natl Acad Sci USA 83:4533–4537PubMedCrossRefGoogle Scholar
  17. 17.
    Hack CE, Nuijens JH, Strack van Schijndel RJM, Abbink JJ, Eerenberg AJM, Thijs LG (1990) A model for the interplay of inflammatory mediators in sepsis — a study in 48 patients. Intensive Care Med 16:S187-S191PubMedCrossRefGoogle Scholar
  18. 18.
    Hesselvik JF, Blombäck M, Brodin B, Maller R (1989) Coagulation, fibrinolysis and kallikrein systems in sepsis: relation to outcome. Crit Care Med 17:724–733PubMedCrossRefGoogle Scholar
  19. 19.
    Woodman RC, Harker LA (1990) Bleeding complications associated with cardiopulmonary bypass. Blood 76: 1680–1697PubMedGoogle Scholar
  20. 20.
    Thomson C, Forbes CD, Prentice CR (1973) The potentiation of platelet aggregation and adhesion by heparin in vitro and in vivo. Clin Sci Mol Med 45:485–494PubMedGoogle Scholar
  21. 21.
    Lazarowski ER, Santome JA, Behrens NH, Sanchez Avalos JC (1986) Aggregation of human neutrophils be heparin. Thromb Res 41:437–446PubMedCrossRefGoogle Scholar
  22. 22.
    Saba HI, Saba SR, Blackburn CA, Hartmann RC, Mason RG (1979) Heparin neutralization of PGI2: effects upon platelets. Science 205:499–501PubMedGoogle Scholar
  23. 23.
    Davies GC, Sobel M, Salzman EW (1980) Elevated plasma fibrinopeptide A and thromboxane A2 levels during cardiopulmonary bypass. Circulation 61:808–814PubMedGoogle Scholar
  24. 24.
    George JN, Pickett EB, Saucerman S, McEver RP, Kunicki TJ, Kieffer N, Newman PJ (1986) Platelet surface glycoproteins. Studies on resting and activated platelets and platelet membrane microparticles in normal subjects, and observations in patients during adult respiratory distress syndrome and cardiac surgery. J Clin Invest 78:340–348PubMedCrossRefGoogle Scholar
  25. 25.
    Dechavanne M, Ffrench M, Pages J, Ffrench P, Boukerche H, Bryon PA, McGregor JL (1987) Significant reduction in the binding of a monoclonal antibody (LYP 18) directed against the IIb/IIIa glycoprotein complex to platelets of patients having undergone extracorporeal circulation. Thromb Haemost 57:106–109PubMedGoogle Scholar
  26. 26.
    Wenger RK, Lukasiewicz H, Mikuta BS, Niewiarowski S, Edmunds LHJ (1989) Loss of platelet fibrinogen receptors during clinical cardiopulmonary bypass. J Thorac Cardiovasc Surg 97:235–239PubMedGoogle Scholar
  27. 27.
    Abrams CS, Ellison N, Budzynski AZ, Shattil SJ (1990) Difect detection of activated platelets and platelet-derived microparticles in humans. Blood 75:128–138PubMedGoogle Scholar
  28. 28.
    Wachtfogel YT, Kucich U, Greenplate J, Gluszko P, Abrams W, Weinbaum G, Wenger RK, Rucinski B, Niewiarowski S, Edmunds LHJ (1987) Human neutrophil degranulation during extracorporeal circulation. Blood 69: 324–330PubMedGoogle Scholar
  29. 29.
    Wachtfogel YT, Harpel PC, Edmunds LHJ, Colman RW (1989) Formation of C1s-C1-inhibitor, kallikrein-C1-inhibitor, and plasmin-α2-plasmin inhibitor complexes during cardiopulmonary bypass. Blood 73:468–471PubMedGoogle Scholar
  30. 30.
    Gallimore MJ, Heller W, Fuhrer G, Wendel H, Klaffschenkel R, Hoffmeister HE (1992) Contact activation, heparins and cardiopulmonary bypass. Thromb Haemost 68:91–92PubMedGoogle Scholar
  31. 31.
    Furie B, Furie BC (1992) Molecular and cellular biology of blood coagulation. N Engl J Med 326:800–806PubMedCrossRefGoogle Scholar
  32. 32.
    McLean J (1916) The thromboplastic action of cephalin. Am J Physiol 41:250Google Scholar
  33. 33.
    Gregorius FK, Rand RW (1976) Scanning electron microscopy of the rat common carotid artery. III. Heparin effects on platelets. Surgery 79:583–589Google Scholar
  34. 34.
    Chen J, Karlberg K-E, Sylven C (1991) Heparin and low molecular weight heparin but not hirudin stimulate platelet aggregation in whole blood from acetylsalicylic acid treated healthy volunteers. Thromb Res 63:319–329PubMedCrossRefGoogle Scholar
  35. 35.
    Zucker MB (1975) Effect of heparin on platelet function. Thromb Diath Haemorrh 33:63–65PubMedGoogle Scholar
  36. 36.
    Michalski R, Lane DA, Kakkar VJ (1977) Comparison of heparin and a semisynthetic heparin analogue. II. Some effects on platelet function. Br J Haematol 37:247–256PubMedGoogle Scholar
  37. 37.
    Bestermann EM, Gillet MP (1973) Heparin effects on plasma lysolecithin formation and platelet aggregation. Atherosclerosis 17:503–513CrossRefGoogle Scholar
  38. 38.
    Koch KM, Bechstein PB, Fassbinder W, Kaltwasser P, Schoeppe W (1975) Occult blood loss and iron balance in chronic renal failure. Proc EDTA 112: 681–684Google Scholar
  39. 39.
    Chong BH, Berndt MC (1989) Heparin induced thrombocytopenia. Blut 58: 53–57PubMedCrossRefGoogle Scholar
  40. 40.
    Gallimore MJ, Fuhrer G, Heller W, Hoffmeister HE (1991) The effects of fractionated and unfractionated heparins with and without aprotinin on plasma inhibition of alpha and beta FXII a. Agents&Actions 38:257–264Google Scholar
  41. 41.
    Bjornsson TD, Wolfram KM, Kitchell BB (1982) Heparin kinetics determined by three assay methods. Clin Pharmacol Ther 31:104–113PubMedCrossRefGoogle Scholar
  42. 42.
    Schapira M, Christman BW (1990) Neutralization of heparin and protamine. Time for a change? Circulation 82:1877–1879PubMedGoogle Scholar
  43. 43.
    Kaplan AA, Petrillo R (1987) Regional heparinization for continuous arteriovenous hemofiltration (CAVH). Asaio Trans 33:312–315PubMedGoogle Scholar
  44. 44.
    Teng CL, Kim JS, Port FK, Wakefield TW, Till GO, Yang VC (1988) A protamine filter for extracorporeal blood heparin removal. Asaio Trans 34:743–746PubMedGoogle Scholar
  45. 45.
    Larm O, Larsson R, Olsson P (1983) A new non-thrombogenic surface prepared by selective covalent binding of heparin via a modified reducing terminal residue. Biomat Med Dev Artif Org 2:161–173Google Scholar
  46. 46.
    Arnander C, Dryjski M, Larsson R, Olsson P, Swedenborg J (1986) Thrombin uptake and inhibition on endothelium and surfaces with a stable heparin coating. A comparative in vitro study. J Biomed Mater Res 20:235–246PubMedCrossRefGoogle Scholar
  47. 47.
    Bindslev L, Eklund J, Norlander O, Swedenborg J, Olsson P, Nilsson E, Larm O, Gouda I, Malmberg A, Scholander E (1987) Treatment of acute respiratory failure by extracorporeal carbon dioxide elimination performed with a surface heparinized artificial lung. Anesthesiology 67:117–120PubMedGoogle Scholar
  48. 48.
    Peters J, Radermacher P, Kuntz ME, Rosenbauer KA, Breulmann M, Bürrig KF, Hopf HB, Rossaint R, Schulte HD, Olsson P, Falke KJ (1988) Extracorporeal CO2 removal with a heparin coated artificial lung. Intensive Care Med 14:578–584PubMedCrossRefGoogle Scholar
  49. 49.
    Schrader J, Stibbe W, Armstrong VW, Kandt M, Muche R, Kostering H, Seidel D, Scheler F (1988) Comparison of low molecular weight heparin to standard heparin in hemodialysis/hemofiltration. Kidney Int 33:890–896PubMedGoogle Scholar
  50. 50.
    Schrader J, Stibbe W, Kandt M, Warneke G, Armstrong V, Muller HJ, Scheler F (1990) Low molecular weight heparin versus standard heparin. A long-term study in hemodialysis and hemofiltration patients. ASAIO Trans 36:28–32PubMedGoogle Scholar
  51. 51.
    Bertele V, Roncanglione MC, Donati MB, de Gaetano G (1983) Heparin counteracts the antiaggregating effect of prostacyclin by potentiating platelet aggregation. Thromb Haemost 49: 81–83PubMedGoogle Scholar
  52. 52.
    Turney JH, Williams LC, Fewell MR, Parsons V, Weston MJ (1980) Platelet protection and heparin sparing with prostacyclin during regular dialysis therapy. Lancet II:224–226Google Scholar
  53. 53.
    Zusman RM, Rubin RH, Cato AE, Cocchetto DM, Crow JW, Tolkoff-Rubin N (1981) Haemodialysis using prostacyclin instead of heparin as the sole antithrombotic agent. N Engl J Med 304:934–939PubMedCrossRefGoogle Scholar
  54. 54.
    Keogh A, Rylance P, Weston M, Parsons V (1984) Prostacyclin haemodialysis in patients at risk of haemorrhage. Proc Eur Dial Trans Assoc 13:51–54Google Scholar
  55. 55.
    Mehta RL, McDonald BR, Aguilar MM, Ward DM (1990) Regional citrate anticoagulation for continuous arteriovenous hemodialysis in critically ill patients. Kidney Int 38:976–981PubMedGoogle Scholar
  56. 56.
    Ahmad S, Yeo KT, Jensen WM, Landicho D, Geogory B, Moritz JL, Kenny M (1990) Citrate anticoagulation during in vivo simulation of slow hemofiltration. Blood Purif 8:177–182PubMedGoogle Scholar
  57. 57.
    Chien S, Jan KM (1973) Ultrastructural basis of the mechanism of rouleaux formation. Microvasc Res 5:155–166PubMedCrossRefGoogle Scholar
  58. 58.
    Webb AR, Nash GB, Dormandy JA, Bennett ED (1990) A comparison of the effects of artificial plasma substitutes, albumin and saline solutions on in vitro apparent blood viscosity. Clin Hemorheol 10:287–296Google Scholar
  59. 59.
    Wendon J, Smithies M, Sheppard M, Bullen K, Tinker J, Bihari D (1989) Continuous high volume venous-venous haemofiltration in acute renal failure. Intensive Care Med 15:358–363PubMedCrossRefGoogle Scholar
  60. 60.
    David S, Cambi V (1992) Hemofiltration: predilution versus postdilution. Contrib Nephrol 96:77–85PubMedGoogle Scholar
  61. 61.
    Oedekoven B, Bey R, Mottaghy K, Schmid-Schonbein H (1984) Gabexate mesilate (FOY) as an anticoagulant in extracorporeal circulation in dogs and sheep. Thromb Haemost 52:329–332PubMedGoogle Scholar
  62. 62.
    Royston D (1990) The serine antiprotease aprotinin (Trasylol): a novel approach to reducing postoperative bleeding. Blood Coag Fibrinolysis 1:55–59Google Scholar
  63. 63.
    Fritz H, Wunderer G (1983) Biochemistry and applications of aprotinin, the kallikrein inhibitor from bovine organs. Arzneimittelforschung 33:479–494PubMedGoogle Scholar
  64. 64.
    Philipp E (1978) Calculations and hypothetical considerations on the inhibition of plasmin and plasma kallikrein by Trasylol. In: Davidson JF, Rowan RM, Samama MM, Desnoyers PC (eds) Progress in chemical fibrinolysis and thrombolysis. Raven Press, New York, pp 291–295Google Scholar
  65. 65.
    Fritz H (1978) Inhibition of plasmin and plasma kallikrein by the basic trypsin-kallikrein inhibitor from bovine organs (Trasylol) and similar protease inhibitors — theoretical considerations. In: Davidson JJ, Rowan RM, Samama MM, Desnoyers PC (eds) Progress in chemical fibrinolysis and thrombolysis. Raven Press, New York, pp 285–290Google Scholar
  66. 66.
    Glenn TM, Herlich BL, Lefer AM (1973) Protective action of a protease inhibitor in hemorrhagic shock. Arch Int Pharmacodyn Ther 203:292–304PubMedGoogle Scholar
  67. 67.
    Nimmo GR, Cumming AD (1991) The effects of aprotinin in septic shock unresponsive to volume loading. Crit Care Med 19:S16Google Scholar
  68. 68.
    van Oeveren W, Harder MP, Roozendaal KJ, Eijsman L, Wildevuur C (1990) Aprotinin protects platelets against the initial effect of cardiopulmonary bypass. J Cardiovasc Surg 99:788–797Google Scholar
  69. 69.
    Del Maschio A, Evangelista V, Rajtar G, Chen Z, Cerletti C, de Gaetano G (1990) Platelet activation by polymorphonuclear leukocytes exposed to chemotactic agents. Am J Physiol 258:H870-H879PubMedGoogle Scholar
  70. 70.
    Evangelista V, Rajtar G, de Gaetano G, White JG, Cerletti C (1991) Platelet activation by FMLP stimulated polymorphonuclear leukocytes: the activity of Cathepsin G is not prevented by antiproteinases. Blood 77:2379–2388PubMedGoogle Scholar
  71. 71.
    Faint RW, Mythen MG, Mackie IJ, Machin SJ (1993) Aprotinin inhibits platelet aggregation induced by purified neutrophils. Br J Haematol (in press)Google Scholar
  72. 72.
    Royston D, Bidstrup BP, Taylor KM, Sapsford RN (1987) Effect of aprotinin on need for blood transfusions after repeat open heart surgery. Lancet II:1289–1291CrossRefGoogle Scholar
  73. 73.
    Dietrich W, Barankay A, Dilthey G, Henze R, Niekau E, Sebening F, Richter JA (1989) Reduction of homologous blood requirement in cardiac surgery by intraoperative aprotinin application. Thorac Cardiovasc Surg 37:92–98PubMedCrossRefGoogle Scholar
  74. 74.
    Brunet F, Mira JP, Belghith M, Lanore JJ, Schlumberger S, Toulon P, Dhainaut JF (1992) Effect of aprotinin on hemorhagic complications in ARDS patients during prolonged extracorporeal CO2 removal. Intensive Care Med 18:364–367PubMedCrossRefGoogle Scholar
  75. 75.
    Colvin BT, Barrowcliffe TW (1993) The British Society for Haematology Guidelines on the use and monitoring of heparin 1992: Second Revision. Clin Pathol 46:97–103Google Scholar
  76. 76.
    Francis JL, Howard C (1993) The effect of aprotinin on the response of the activated partial thromboplastin time (APTT) to heparin. Blood Coag Fibrinolysis 4:35–40CrossRefGoogle Scholar
  77. 77.
    Wendel HP, Heller W, Gallimore MJ, Bantel H, Muller-Beissenhirtz H, Hoffmeister HE (1993) The prolonged activated clotting time (ACT) with aprotinin depends on the type of activator used for measurement. Blood Coag Fibrinolysis 4:41–45Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • A. R. Webb
    • 1
  • M. G. Mythen
    • 1
  • D. Jacobson
    • 1
  • I. J. Mackie
    • 2
  1. 1.Bloomsbury Institute of Intensive Care MedicineMeddlesex HospitalLondonUK
  2. 2.Department of HaematologyUCL Medical SchoolLondonUK

Personalised recommendations