Marine Geophysical Researches

, Volume 10, Issue 1–2, pp 1–39 | Cite as

Kane Fracture Zone

  • Brian E. Tucholke
  • Hans Schouten
Part II: The Kane Fracture Zone


The Kane Fracture Zone probably is better covered by geophysical survey data, acquired both by design and incidentally, than any other fracture zone in the North Atlantic Ocean. We have used this data to map the basement morphology of the fracture zone and the adjacent crust for nearly 5700 km, from near Cape Hatteras to the middle of the Mesozoic magnetic anomalies west of Cap Blanc, northwest Africa. We use the trends of the Kane transform valley and its inactive fracture valley to determine the record of plate-motion changes, and we interpret the basement structural data to examine how the Kane transform evolved in response to changes in plate motion. Prior to about 133 Ma the Kane was a small-offset transform and its fracture valley is structurally expressed only as a shallow ( < 0.5 km) trough. In younger crust, the offset may have increased to as much as 190 km (present offset 150 km) and the fracture valley typically is up to 1.2 km deep. This part of the fracture valley records significant changes in direction of relative plate motion (5°–30°) near 102 Ma, 92 Ma, 59 Ma, 22 Ma, and 17 Ma. Each change corresponds to a major reorganization of plate boundaries in areas around the Atlantic, and the fracture-zone orientation appears to be a sensitive recorder of these events.

The Kane transform has exhibited characteristic responses to changes in relative plate motion. Counterclockwise plate-motion changes put the left-lateral transform offset into extension, and the response was for ridge tips at the ridge-transform intersections to propagate across the transform valley and against the truncating lithosphere. Heating of this lithosphere appears to have produced uplift and formation of a well developed transverse ridge that bounds the inactive fracture valley on its older side. The propagating ridge tips also rotated toward the transform fault in response to the local stress field, forming prominent hooked ridges that now extend into or across the inactive fracture valley. Clockwise (compressional) changes in relative plate motion produced none of these features, and the resulting fracture valleys typically have a wide-V shape.

The Kane transform experienced severe adaptions to the changes in relative plate motion at about 102 Ma (compressional shift) and 92 Ma (extensional shift), and new transform faults were formed in crust outside the contemporary transform valley. Subsequently, the transform offset has been smaller and the rates of change in plate motion have been more gradual, so transform-fault adjustment has been contained within the transform valley. The fracture-valley structure formed during extensional and compressional changes in relative plate motion can be decidedly asymmetrical in conjugate limbs of the fracture zone. This asymmetry appears to be related to the ‘absolute’ motion of the plate boundary with respect to the asthenosphere.

Key words

North Atlantic crustal structure fracture zones transform faults plate-motion history 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abrams, L. J.: 1986, ‘Morphology and Crustal Structure of the Kane Fracture Zone Transverse Ridge’, Unpublished M.S. Thesis. University of Rhode Island, 81 pp.Google Scholar
  2. Abrams, L. J., Detrick, R. S., and Fox, P. J.: 1988, ‘Morphology and Crustal Structure of the Kane Transverse Ridge’,J. Geophys. Res. 93, 3195–3210.Google Scholar
  3. Argus, D. F., Gordon, R. G., De Mets, C., and Stein, S.: 1988, ‘Plate Motion' Microplates, and Closure of the Africa-North America-Eurasia Plate Circuit’,J. Geophys. Res. (in review).Google Scholar
  4. Austin, J. A., Jr. and Uchupi, E.: 1982, ‘Continental-Oceanic Crustal Transition off Southwest Africa’,Am. Assoc. Petrol. Geol. Bull. 66, 1328–1347.Google Scholar
  5. Bonatti, E.: 1976, ‘Serpentinite Protrusions in the Oceanic Crust’,Earth Planet. Sci. Letters 32, 107–113.CrossRefGoogle Scholar
  6. Bonatti, E. and Honnorez, J.: 1976, ‘Sections of the Earth's Crust in the Equatorial Atlantic’,J. Geophys. Res. 81, 4104–4116.Google Scholar
  7. Bonatti, E. and Crane, K.: 1982, ‘Oscillatory Spreading Explanation of Anomalously Old Uplifted Crust near Oceanic Transforms’,Nature 300, 343–345.CrossRefGoogle Scholar
  8. CNEXO: 1979, ‘Bilan des Releves SEA-BEAM et Etablissement de Cartes, Realisces au Sein du Department’,CNEXO Rapport Scientifique 1979, 96 pp.Google Scholar
  9. Collette, B. J.: 1974, ‘Thermal Contraction Joints in a Spreading Seafloor as Origin of Fracture Zones’,Nature 251, 299–300.CrossRefGoogle Scholar
  10. Collette, B. J.: 1986, ‘Fracture Zones in the North Atlantic: Morphology and Model’,J. Geol. Society London 143, 763–774.Google Scholar
  11. Collette, B. J., Schouten, H., Rutten, K., and Slootweg, A. P.: 1974, ‘Structure of the Mid-Atlantic Ridge Province between 12° and 18° N,Mar. Geophys. Res. 2, 143–179.Google Scholar
  12. Collette, B. J., Slootweg, A. P., Searle, R. C., and Atwater, T.: 1978, ‘Oblique Spreading and Fracture Zones’,Nature 274, 187–188.CrossRefGoogle Scholar
  13. Collette, B. J., Slootweg, A. P., Verhoef, J., and Roest, W. R.: 1984, ‘Geophysical Investigations of the Floor of the Atlantic Ocean between 10° and 38° N (Kroonvlag Project)’,Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen Series B 86, 1–76.Google Scholar
  14. Cormier, M. H., Detrick, R. S., and Purdy, G. M.: 1984, ‘Anomalously Thin Crust in Oceanic Fracture Zones: New Seismic Constraints from the Kane Fracture Zone’,J. Geophys. Res. 89, 10,249–10,266.Google Scholar
  15. Crane, K.: 1976, ‘The Intersection of the Siqueiros Transform Fault and the East Pacific Rise’,Marine Geology 21, 25–46.CrossRefGoogle Scholar
  16. Crane, K.: 1985, ‘The Spacing of Ridge-Axis Highs: Dependence Upon Diapiric Processes in the Underlying Asthenosphere?’,Earth Planet. Sci. Letters 72, 405–414.CrossRefGoogle Scholar
  17. De Long, S. E., Dewey, J. F., and Fox, P. J.: 1977, ‘Displacement History of Oceanic Fracture Zones’,Geology 5, 199–202.CrossRefGoogle Scholar
  18. Detrick, R. S., Fox, P. J., Kastens, K., Ryan, W. B. F., Mayer, L., and Karson, J. A.: 1984, ‘A Sea Beam Survey of the Kane Fracture Zone and Adjacent Mid-Atlantic Ridge Rift Valley’,EOS Trans. Amer. Geophys. Union 65, 1006.Google Scholar
  19. Detrick, R. S., Jr. and Purdy, G. M.: 1980, ‘The Crustal Structure of the Kane Fracture Zone from Seismic Refraction Studies’,J. Geophys. Res. 85, 3759–3777.Google Scholar
  20. Fox, P. J. and Gallo, D.: A Tectonic Model for Ridge-Transform-Ridge Boundaries: Implications for the Structure of Oceanic Lithosphere,Tectonophysics 104, 205–242.Google Scholar
  21. Fox, P. J. and Gallo, D. G.: 1986, ‘The Geology of North Atlantic Transform Plate Boundaries and their Aseismic Extensions’, in P. R. Vogt and B. E. Tucholke (eds.),The Geology of North America, Vol. M, The Western North Atlantic Region, Geol. Soc. America, Boulder, 157–172.Google Scholar
  22. Fox, P. J. and K. C. Macdonald: 1986, ‘Thoughts on Ridge Axis Discontinuities: Implications for Accretionary Processes’,EOS Trans. Am. Geophys. Union 67, 360.Google Scholar
  23. Fox, P. J., Pitman, W. C., III, and Shephard, F.: 1969, ‘Crustal Plates in the Central Atlantic: Evidence for at Least Two Poles of Rotation’,Science 165, 487–489.Google Scholar
  24. Fox, P. J., Detrick, R. S., and Purdy, G. M.: 1980, ‘Evidence for Crustal Thinning near Fracture Zones: Implications for Ophiolites’,Ophiolites: Proceedings International Ophiolite Symposium. Cyprus 1979, Cyprus Geological Survey Dept., 161–168.Google Scholar
  25. Francheteau, J., Choukroune, P., Hekinian, R., Le Pichon, X., and Needham, H. D.: 1976, ‘Oceanic Fracture Zones Do Not Provide Deep Sections in the Crust’,Can. J. Earth Sci. 13, 1223–1235.Google Scholar
  26. Fujita, K. and Sleep, N. H.: 1978, ‘Membrane Stresses near Mid-Ocean Ridge-Transform Intersections’,Tectonophysics 50, 207–221.CrossRefGoogle Scholar
  27. Gallo, D. G., Fox, P. J., and Macdonald, K. C.: 1986, ‘A Sea Beam Investigation of the Clipperton Transform Fault: the Morphotectonic Expression of a Fast Slipping Transform Boundary’,J. Geophys. Res. 91, 3445–3467.Google Scholar
  28. Glenn, M. F.: 1976, ‘Multi-Narrow Beam Sonar System’,Oceans '76 Conf. Proc. MTS-IEEE, Sept. 13–15,8D, 1–2.Google Scholar
  29. Glenn, M. F.: 1970, ‘Introducing an Operational Multi-Beam Array Sonar’,Int. Hydr. Rev. 47, 35–39.Google Scholar
  30. Houtz, R. E.: 1981, ‘Comparison of Sediment Sound-Velocity Functions from Conjugate Margins,Geol. Soc. Amer. Bull. 92, 262–267.CrossRefGoogle Scholar
  31. Hussong, D. M., Fryer, P. B., Tuthill, J. D., and Wipperman, L. K.: 1979, ‘The Geological and Geophysical Setting Near DSDP Site 395, North Atlantic Ocean’, in W. G. Melson, and P. D. Rabinowitz, (eds.),Initial Reports of the Deep Sea Drilling Project 45, U.S. Government Printing Office, Washington, D.C., 23–37.Google Scholar
  32. Johnson, G. L. and Vogt, P. R.: 1973, ‘Mid-Atlantic Ridge from 47° to 51° North’,Geol. Soc. Amer. Bull. 84, 3443–3462.CrossRefGoogle Scholar
  33. Karson, J. A. and Dick, H. J. B.: 1983, ‘Tectonics of Ridge-Transform Intersections at the Kane Fracture Zone’,Mar. Geophys. Res. 6, 51–98.CrossRefGoogle Scholar
  34. Karson, J. A. and Dick, H. J. B.: 1984, ‘Deformed and Metamorphosed Oceanic Crust on the Mid-Atlantic Ridge’,Ofioliti 9, 279–302.Google Scholar
  35. Kennett, J. P., McBirney, A. R., and Thunell, R. C.: 1977, ‘Episodes of Cenozoic Volcanism in the Circum-Pacific Region’,J. Volcanol. Geotherm. Res. 2, 145–163.CrossRefGoogle Scholar
  36. Kent, D. V. and Gradstein, F. M.: 1986, ‘A Jurassic to Recent Chronology’, in P. R. Vogt and B. E. Tucholke (eds.),The Geology of North America, Vol. M, The Western North Atlantic Region, Geol. Soc. America, Boulder, 45–50.Google Scholar
  37. Klitgord, K. D. and Schouten, H.: 1986, ‘Plate Kinematics of the Central Atlantic’ in P. R. Vogt and B. E. Tucholke (eds.),The Geology of North America, Vol. M, The Western North Atlantic Region, Geol. Soc. America, Boulder, 351–378.Google Scholar
  38. LePichon, X.: 1968, ‘Sea-Floor Spreading and Continental Drift’,J. Geophys. Res. 73, 3661–3697.Google Scholar
  39. Lonsdale, P.: 1978, ‘Near-Bottom Reconaissance of a Fast-Slipping Transform Fault Zone at the Pacific-Nazca Plate Boundary’,J. Geology 86, 451–472.CrossRefGoogle Scholar
  40. Lowrie, A. and Escowitz, E.: 1969, ‘Kane 9’,Global Ocean Floor Analysis and Research Data Series, Vol. 1, U.S. Naval Oceanographic Office, 974 pp.Google Scholar
  41. Lowrie, A., Egloff, J., Jr., and Jahn, W. H.: 1978, ‘Kane Seamount in the Cape Verde Basin, Eastern Atlantic’,Marine Geology 26, M29-M35.CrossRefGoogle Scholar
  42. Macdonald, K. C.: 1986, ‘The Crest of the Mid-Atlantic Ridge: Models for Crustal Generation Processes and Tectonics’, in P. R. Vogt and B. E. Tucholke (eds.),The Geology of North America, Vol. M, The Western North Atlantic Region, Geol. Soc. America, Boulder, 51–68.Google Scholar
  43. Macdonald, K. C., Castillo, D. A., Miller, S. P., Fox, P. J., Kastens, K. A., and Bonatti, E.: 1986, ‘Deep-Tow Studies of the Vema Fracture Zone. 1. Tectonics of a Major Slow Slipping Transform Fault and its Intersection with the Mid-Atlantic Ridge’,J. Geophys. Res. 91, 3334–3354.Google Scholar
  44. Macdonald, K., Sempere, J. C., and Fox, P. J.: 1984, ‘East Pacific Rise from Siqueiros to Orozco Fracture Zones: Along-Strike Continuity of Axial Neovolcanic Zone and Structure and Evolution of Overlapping Spreading Centers’,J. Geophys. Res. 89, 6049–6069.Google Scholar
  45. Madsen, J. A., Fox, P. J., and Macdonald, K. C.: 1986, ‘Morphotectonic Fabric of the Orozco Transform Fault: Results from a Sea Beam Investigation’,J. Geophys. Res. 91, 3439–3454.Google Scholar
  46. Menard, H. W. and Atwater, T. M.: 1968, ‘Changes in Direction of Sea Floor Spreading’,Nature 219, 463–467.Google Scholar
  47. Menard, H. W. and Atwater, T.: 1969, ‘Origin of Fracture Zone Topography’,Nature 222, 1037–1040.Google Scholar
  48. Minster, J. B. and Jordan, T. H.: 1978, ‘Present-Day Plate Motions’,J. Geophys. Res. 83, 5331–5354.Google Scholar
  49. Morgan, J. P. and Forsyth, D. W.: 1988, ‘Three-Dimensional Flow and Temperature Perturbations due to a Transform Offset: Effects on Oceanic and Upper Mantle Crustal Structure’,J. Geophys. Res. 93, 2955–2966.Google Scholar
  50. Morgan, W. J.: 1968, ‘Rises, Trenches, Great Faults, and Crustal Blocks’,J. Geophys. Res. 73, 1959–1982.Google Scholar
  51. Morgan, W. J.: 1983, ‘Hotspot Tracks and the Early Rifting of the Atlantic’,Tectonophysics 94, 123–139.CrossRefGoogle Scholar
  52. Mutter, J. C., Detrick, R. S., and NAT Study Group: 1984, ‘Multichannel Seismic Evidence for Anomalously Thin Crust at Blake Spur Fracture Zone’,Geology 12, 534–537.CrossRefGoogle Scholar
  53. OTTER, 1984, ‘The Geology of the Oceanographer Transform: the Ridge-Transform Intersection’,Mar. Geophys. Res. 6, 109–141.CrossRefGoogle Scholar
  54. OTTER, 1985, ‘The Geology of the Oceanographer Transform: the Transform Domain’,Mar. Geophys. Res. 7, 329–358.CrossRefGoogle Scholar
  55. Parker, R. L. and Oldenburg, D. W.: 1973, ‘Thermal Model of Ocean Ridges’,Nature 242, 137–139.CrossRefGoogle Scholar
  56. Parsons, B. and Sclater, J. G.: 1977, ‘An Analysis of the Variation of Ocean Floor Bathymetry and Heat Flow with Age’,J. Geophys. Res. 82, 803–827.Google Scholar
  57. Pockalny, R. A., Detrick, R. S., and Fox, P. J.: 1988. ‘Morphology and Tectonics of the Kane Transform from Sea Beam Bathymetry Data’,J. Geophys. Res. 93, 3179–3193.Google Scholar
  58. Purdy, G. M. and Rohr, K.: 1979, ‘A Geophysical Survey within the Mesozoic Magnetic Anomaly Sequence South of Bermuda’,J. Geophys. Res. 84, 5487–5496.Google Scholar
  59. Purdy, G. M. and Detrick, R. S.: 1986, ‘Crustal Structure of the Mid-Atlantic Ridge at 23° N from Seismic Refraction Studies’,J. Geophys. Res. 91, 3739–3762.Google Scholar
  60. Purdy, G. M., Rabinowitz, P. D., and Velterop, J. J. A.: 1979a, ‘The Kane Fracture Zone in the Central Atlantic Ocean’,Earth Planet. Sci. Letters 45, 429–434.CrossRefGoogle Scholar
  61. Purdy, G. M., Rabinowitz, P. D., and Schouten, H.: 1979b, ‘The Mid-Atlantic Ridge at 23° N: Bathymetry and Magnetics’, in W. G. Melson and P. D. Rabinowitz (eds.),Initial Reports of the Deep Sea Drilling Project,45, U.S. Government Printing Office, Washington, D.C., 119–128.Google Scholar
  62. Purdy, G. M., Schouten, H., Crowe, J., Barrett, D. L., Falconer, R. K. H., Udintsev, G. B., Marova, N. A., Litvin, V. M., Valyashko, G. M., Markushevich, V. M., and Zdorovenin, V. V.: 1979c, ‘IPOD Survey Area AT-6: a Site Survey’, in W. G. Melson and P. D. Rabinowitz (eds.),Initial Reports of the Deep Sea Drilling Project,45, U.S. Government Printing Office, Washington, D.C., 39–48.Google Scholar
  63. Rabinowitz, P. D. and Purdy, G. M.: 1976, ‘The Kane Fracture Zone in the Western Central Atlantic Ocean’,Earth Planet. Sci. Letters 33, 21–26.CrossRefGoogle Scholar
  64. Rabinowitz, P. D. and Schouten, H., (eds.), 1984, ‘Mid-Atlantic Ridge between 22° and 38° N,Ocean Margin Drilling Program Atlas Series 11, Marine Science International, Woods Hole.Google Scholar
  65. Raleigh, C. B. and Paterson, M. B.: 1965, ‘Experimental Deformation of Serpentinite and its Tectonic Implications’,J. Geophys. Res. 70, 3965–3985.Google Scholar
  66. Roest, W. R. and Collette, B. J.: 1986, ‘The Fifteen Twenty Fracture Zone and the North American-South American Plate Boundary,J. Geol. Society London 143, 833–843.CrossRefGoogle Scholar
  67. Rohr, K. M. M.: 1983, ‘A Study of the Seismic Structure of Upper Oceanic Crust Using Wide-Angle Reflections’, Unpublished Ph.D Thesis. Massachusetts Institute of Technology-Woods Hole Oceanographic Institution Joint Program in Oceanography,WHOI Ref. 83-10, 210 pp.Google Scholar
  68. Rohr, K. and Twigt, W.: 1980, ‘Mesozoic Complementary Crust in the North Atlantic’,Nature 283, 758–761.CrossRefGoogle Scholar
  69. Rona, P. A. and Richardson, E. S.: 1978, ‘Early Cenozoic Global Plate Reorganization’,Earth Planet. Sci. Letters 40, 1–11.CrossRefGoogle Scholar
  70. Rona, P. A. and Gray, D. F.: 1980, ‘Structural Behavior of Fracture Zones Symmetric and Asymmetric about a Spreading Axis: Mid-Atlantic Ridge (Lat. 23° N to 27° N)’,Geol. Soc. Amer. Bull. 91, 485–494.CrossRefGoogle Scholar
  71. Rona, P. A., Harbison, R. N., Bassinger, B. G., Scott, R. B., and Nalwalk, A. J.: 1976, ‘Tectonic Fabric and Hydrothermal Activity of Mid-Atlantic Ridge Crest (Lat. 26° N)’,Geol. Soc. Amer. Bull. 87, 661–674.CrossRefGoogle Scholar
  72. Rona, P. A., Harbison, R. N., and Bush, S. A. (1974), ‘Abyssal Hills of the Eastern Central North Atlantic’,Marine Geology 16, 275–292.CrossRefGoogle Scholar
  73. Rutter, E. H. and Brodie, K. H.: 1987, ‘On the Mechanical Properties of Oceanic Transform Faults’,Annales Tectonicae 1, 87–96.Google Scholar
  74. Schouten, J. A.: 1971, ‘A Fundamental Analysis of Magnetic Anomalies over Ocean Ridges’,Mar. Geophys. Res. 1, 111–144.CrossRefGoogle Scholar
  75. Schouten, H. and McCamy, K.: 1972, ‘Filtering Marine Magnetic Anomalies’,J. Geophys. Res. 77, 7089–7099.Google Scholar
  76. Schouten, H. and White, R. S.: 1980, ‘Zero-Offset Fracture Zones’,Geology 8, 175–179.CrossRefGoogle Scholar
  77. Schouten, H. and Klitgord, K. D.: 1982, ‘The Memory of the Accreting Plate Boundary and the Continuity of Fracture Zones’,Earth Planet. Sci. Letters 59, 255–266.CrossRefGoogle Scholar
  78. Schouten, H., Klitgord, K. D., and Whitehead, J. A.: 1985, ‘Segmentation of the Mid-Ocean. Ridges’,Nature 317, 225–229.CrossRefGoogle Scholar
  79. Schouten, H., Dick, H. J. B., and Klitgord, K. D.: 1987, ‘Migration of Mid-Ocean-Ridge Volcanic Segments’,Nature 326, 835–839.CrossRefGoogle Scholar
  80. Searle, R.: 1981, ‘The Active Part of Charlie-Gibbs Fracture Zone: A Study Using Sonar and Other Geophysical Techniques’,J. Geophys. Res. 86, 243–262.Google Scholar
  81. Searle, R. C.: 1986, ‘GLORIA Investigations of Oceanic Fracture Zones: Comparative Study of the Transform Fault Zone’,J. Geol. Society London 143, 743–756.Google Scholar
  82. Searle, R. C. and Laughton, A. S.: 1977, ‘Sonar Studies of the Mid-Atlantic Ridge and Kurchatov Fracture Zone’,J. Geophys. Res. 82, 5313–5328.Google Scholar
  83. Searle, R. C. and Laughton, A. S.: 1981, ‘Fine-Scale Sonar Study of Tectonics and Volcanism of the Reykjanes Ridge’,Oceanologica Acta, Proceedings of the 26th International Geological Congress, Geology of Oceans Symposium, 5–13.Google Scholar
  84. Severinghaus, J. and Macdonald, K. C.: 1986, ‘High Inside Corners at Ridge-Transform Intersections’,EOS Trans. Am. Geophys. Union 67, 1232.Google Scholar
  85. Shipley, T. H.: 1978, ‘Sedimentation and Echo Characteristics in the Abyssal Hills of the West-Central North Atlantic’,Geol. Soc. Amer. Bull. 89, 397–408.CrossRefGoogle Scholar
  86. Sibuet, J.-C., Hay, W. W., Prunier, A., Montadert, L., Hinz, K., and Fritsch, J.: 1984, ‘Early Evolution of the South Atlantic Ocean: Role of the Rifting Episode’, in W. W. Hay and J.-C. Sibuet (eds.),Initial Reports of the Deep Sea Drilling Project,75, U.S. Government Printing Office, Washington, D.C., 469–481.Google Scholar
  87. Sleep, N. H. and Biehler, S.: 1970, ‘Topography and Tectonics at the Intersections of Fracture Zones and Central Rifts’,J. Geophys. Res. 75, 2748–2752.Google Scholar
  88. Smoot, N. C. and Sharman, G. F.: 1985, ‘Charlie-Gibbs: a Fracture Zone Ridge’,Tectonophysics 116, 137–142.CrossRefGoogle Scholar
  89. Srivastava, S. P. and Tapscott, C. R.: 1986, ‘Plate Kinematics of the North Atlantic’, in P. R. Vogt and B. E. Tucholke (eds.),The Geology of North America, Vol. M, The Western North Atlantic Region, Geol. Soc. America, Boulder, 379–404.Google Scholar
  90. Sundvik, M., Larson, R. L., and Detrick, R. S.: 1984, ‘Rough-Smooth Basement Boundary in the Western North Atlantic Basin: Evidence for a Seafloor-Spreading Origin’,Geology 12, 31–34.CrossRefGoogle Scholar
  91. Sykes, L. R.: 1967, ‘Mechanism of Earthquakes and Nature of Faulting on the Mid-Oceanic Ridges’,J. Geophys. Res. 72, 2131–2153.CrossRefGoogle Scholar
  92. Tucholke, B. E., Houtz, R. E., and Ludwig, W. J.: 1982, ‘Sediment Thickness and Depth to Basement in Western North Atlantic Ocean Basin’,Amer. Assoc. Petrol. Geol. Bull. 66, 1384–1395.Google Scholar
  93. Tucholke, B. E. and Schouten, H.: 1986, ‘Structural Response of North Atlantic Transforms to “Extensional” Shifts in Pole of Relative Plate Motion’,EOS Trans. Am. Geophys. Union 67, 1228.Google Scholar
  94. Turcotte, D. L.: 1974, ‘Are Transform Faults Thermal Contraction Cracks?’,J. Geophys. Res. 79, 2573–2577.Google Scholar
  95. Twigt, W., Verhoef, J., Rohr, K., Mulder, Th. F. A., and Collette, B. J.: 1983, ‘Topography, Magnetics and Gravity over the Kane Fracture Zone in the Cretaceous Magnetic Quiet Zone (African Plate)’,Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen Series B,86, 181–210.Google Scholar
  96. van Andel, T. H. and Komar, P. D.: 1969, “Ponded Sediments of the Mid-Atlantic Ridge between 22° and 23° North Latitude’,Geol. Soc. Amer. Bull. 80, 1163–1190.Google Scholar
  97. van Andel, T. H. and Bowin, C. O.: ‘Mid-Atlantic Ridge between 22° and 23° North Latitude and the Tectonics of Mid-Ocean Rises’,J. Geophys. Res. 73, 1279–1298.Google Scholar
  98. van Andel, T. H., Von Herzen, R. P., and Phillips, J. D.: 1971, ‘The Vema Fracture Zone and the Tectonics of Transverse Shear Zones in Oceanic Crustal Plates’,Mar. Geophys. Res. 1, 261–283.Google Scholar
  99. Vogt, P. R.: 1973, ‘Early Events in the Opening of the North Atlantic’, in D. H. Tarling and S. K. Runcorn (eds.),Implications of Continental Drift to the Earth Sciences, Vol. 2, Academic Press, London, 693–712.Google Scholar
  100. White, R. S. and Matthews, D. H.: 1980, ‘Variations in Oceanic Upper Crustal Structure in a Small Area of the Northeastern Atlantic’,Geophys. J. Roy. Astr. Soc. 61, 401–435.Google Scholar
  101. Whitehead, J. A., Dick, H. J. B., and Schouten, H.: 1984, ‘A Mechanism for Magmatic Accretion Under Spreading Centers’,Nature 312, 146–148.Google Scholar

Copyright information

© Kluwer Academic Publishers 1988

Authors and Affiliations

  • Brian E. Tucholke
    • 1
  • Hans Schouten
    • 1
  1. 1.Woods Hole Oceanographic InstitutionWoods HoleUSA

Personalised recommendations