, 68:3 | Cite as

Cytotaxonomy of the apocynaceae

  • F. M. Van der Laan
  • J. C. Arends


At present there is karyological information on ca 10% of the species and ca 30% of the genera of the Apocynaceae. Basic numbers of x = 6, 8, 9, 10, 11, 12, 16, 18, 20, 21 and 23 have been assessed. Of these x = 11 is primitive, occurring in ca 60% of the genera.

Those of x = 6, 8, 9 and 10 have evolved by reduction, and x = 12 by increase from x = 11. In the subtribe Secondatiinae however, x = 12 is most likely the result of doubling x = 6. The numbers x = 16, 18 and 20 are likewise doubles of x = 8, 9 and 10 respectively. Those of x = 21, 23, and in one case, x = 20 are probably aneuploid products of doubles of x = 11.

The two larger subfamilies, Plumerioideae and Apocynoideae have the basic numbers x = 8, 9, 10 and 11 in common and are not separable on the basis of chromosomal evidence. The third small subfamily Cerberoideae is more homogeneous according to basic number, i.e. x = 10 and 20. Most genera are characterized by a constant basic number, but some have two basic numbers; these clearly are cases of infrageneric aneuploidy. Based on records in the literature two closely related generaApocynum andTrachomitum appear to be characterized by a basic number of x = 8 as well as x = 11. This conflicting situation should be clarified by further karyological research. From the level of subtribe onwards some taxa have one basic number, but others are characterized by two or more numbers. The occurrence of similar basic numbers in different phylads of the family is considered to be the result of similar chromosomal evolution mechanisms.

Approximately 22% of the investigated species are polyploid. Intrageneric polyploidy occurs with a frequency of about 12.5% and infraspecific polyploidy with less than 4%.

The karyotypes observed are symmetrical: the chromosomes within a karyotype are similar in length with primary constrictions usually in a median position. In the Tabernaemontaneae however, it was observed that the karyotypes comprise one pair of distinctly heterobrachial chromosomes in addition to the metacentric ones. This tribe is also characterized by chromosomes which are relatively long.

Most genera of the African continent, which are well known regarding their chromosome number, are characterized by x = 11. Exceptions areStrophantus (x = 9) with a mainly tropical African distribution. Two other genera with derived numbers, i.e.Gonioma with x = 10 andPachypodium with x = 9, occur in southern Africa and Madagascar. The genera with a non-African distribution are less known for their chromosome number. However, the available evidence suggests that evolution of derived numbers has occurred more frequently outside Africa than on this continent.


Chromosome Number Evolution Mechanism Basic Number African Continent Chromosomal Evolution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Arends J. C. & Van der Laan, F. M., 1979, Chrom. Numb. Rep. LXV. Taxon 28: 637.Google Scholar
  2. Banerjee, P. K., 1974, Structural alteration of chromosomes in the evolution of Plumeria. Bull. bot. Soc. Bengal 28: 57–62.Google Scholar
  3. Barink, M. M., 1983, A revision of Pleioceras Baill., Stephanostema K. Schum. and Schizozygia Baill. (Apocynaceae). In: Series of revisions of Apocynaceae XI X111 (ed. Leeuwenberg). Meded. Landbouwhogeschool Wageningen 837.Google Scholar
  4. Baumberger, H., 1970, Chromosomenzahlbestimmungen und Karyotypanalysen bei den Gattungen Anemone. Hepatica und Pulsatilla. Ber. schweiz. bot. Ges. 80: 17–95.Google Scholar
  5. Bawa, K. S., 1973. Chromosome numbers of tree species of a lowland tropical community, J. Arnold Arb. 54: 422–434.Google Scholar
  6. Beek. T. A. ter, Verpoorte, R., Baerheim Svendsen, A., Leeuwenberg, A. J. M. and Bisset, N. G., 1984, J. Ethopharmacology 10: 1–156.CrossRefGoogle Scholar
  7. Beentje, H. J., 1982, A monograph on Strophanthus DC, Meded. Landbouwhogeschool Wageningen 824.Google Scholar
  8. Bir, S. S., Guljeet Singh & Gill, B. S., 1984. Chrom. Numb. Reports LXXXII. Taxon 33: 128.Google Scholar
  9. Datta, P. C. & Maiti, R. K., 1972, Relationships of Plumiereae (Apocynaceae) based on Karyology. Bull. bot. Soc. Bengal. 26: 9–19.Google Scholar
  10. Ehrendorfer, F., 1981. Speciation patterns in woody Angiosperms of tropical origin. In: Progress in clinical and biological research. vol. 96, A. R. Liss, New York.Google Scholar
  11. Ehrendorfer, F., Krendl, F., Habeler, E. & Sauer, W., 1968, Chromosome numbers and evolution in primitive Angiosperms. Taxon 17: 337–468.CrossRefGoogle Scholar
  12. Federov, A. (ed.), 1969, Chromosome numbers of flowering plants. Ac. Sc. U.S.S.R. Leningrad.Google Scholar
  13. Fritsch, R., 1970, Chromosomenzahlen yon Pflanzen der Insel Kuba I. Kulturpflanze 18: 189–197.CrossRefGoogle Scholar
  14. Fritsch, R., 1972, Chromosomenzahlen von Pflanzen der Insel Kuba II. Kulturpflanze 19: 305–313.CrossRefGoogle Scholar
  15. Goldblatt, P., 1981. Index to plant chromosome numbers 1975–1978, Missouri bot. Gard.Google Scholar
  16. Goldblatt, P,. 1984, Index to plant chromosome numbers 1979–1981, Missouri bot. Gard.Google Scholar
  17. Grant, V., 1982a, Periodicities in the chromosome numbers of the Angiosperms, Bot. Gaz. 143: 379–389.CrossRefGoogle Scholar
  18. Grant, V., 1982b, Chromosome number patterns in primitive Angiosperms, Bot. Gaz. 143: 390–394.CrossRefGoogle Scholar
  19. Guljeet Singh, Bir, S. S. & Gill, B. S., 1982. Chrom. Numb. Rep. LXXVII, Taxon 31: 776.Google Scholar
  20. Hill, L. M., 1984, Chrom. Numb. Rep. LXXXIV, Taxon 33: 537.Google Scholar
  21. Jong, B. H. J. de, 1979. A revision of African species of Alstonia R.Br. (Apocynaceae). Meded. Land bouwhogeschool Wageningen 79-13.Google Scholar
  22. Leeuwenberg, A. J. M., 1980, Loganiaceae in Engler. A. & Prantl, K.: Die natürlichen Pflanzenfamilien. Bd 28, bl.Google Scholar
  23. Levan, A., Fredga, K. & Sandberg, A. A., 1965, Nomenclature for centromeric position on chromosomes, Hereditas 52: 201–209.CrossRefGoogle Scholar
  24. Löve, A. & Löve, D., 1982, Chrom. Numb. Rep. LXXV. Taxon 31: 352.Google Scholar
  25. Mangenot, S. & Mangenot, G., 1957. Nombres chromosomiques nouveaux chez diverses Dicotyledones et Monocotyledones d'Afrique occidentale, Bull. Jard. bot. (Bruxelles) 27: 639–654.Google Scholar
  26. Moore, D. M., 1982. Flora Europaea check-list and chromsome index, Cambridge University Press.Google Scholar
  27. Moore, R. J., 1973, Index to plant chromosome numbers for 1967–1971, IOPB, Oosthoek, Utrecht.Google Scholar
  28. Moore, R. J., 1974. Index to plant chromosome numbers for 1972. IOPB, Oosthoek, Scheltema & Holkema, Utrecht.Google Scholar
  29. Moore, R. J., 1977. Index to plant chromosome numbers for 1973–1974, IOPB, Bohn, Scheltema & Holkema, Utrecht.Google Scholar
  30. Rao, P. N. & Mwasumbi, L. B., 1981, Chromosome number reports LXXII. Taxon 30: 694–708.Google Scholar
  31. Raven, P., 1975, The bases of Angiosperm phylogeny: cytology, Ann. Missouri bot. Gard. 62: 724–764.CrossRefGoogle Scholar
  32. Renard, R., Lambinon, J., Reekmans, M. Van der Veken, P. & Govaert, M., 1983. Nombres chromosomiques de quelques Angiosperms du Rwanda, du Burundi et du Kenya, Bull. Jard. bot. nat. belg. 53: 343–371Google Scholar
  33. Roy Tapadar, N. N., 1964, Cytotaxonomic studies in Apocynaceae and delineation of the different evolutionary tendencies operating within the family, Caryologia 17: 103–138.Google Scholar
  34. Roy Tapadar, N. N. & Nirad Kumar Sen. 1960, Cytotaxonomical studies on the economic plants of the family Apocynaceae. Caryologia 12: 367–397.Google Scholar
  35. Rye, B. L., 1979, Chromosome number variation in the Myrta-ceae and its taxonomic implications. Austral. J. Bot. 27: 547–573.CrossRefGoogle Scholar
  36. Sarkar, K., Datta, R. & Chatterjee, U., 1973, Chrom. Nub. Rep. XLII, Taxon 22: 653.Google Scholar
  37. Stearn, W. T., 1972. Vinca difformis subsp. sardoa Stearn (Apocynaceae). Bot. J. Linnean Soc. 65: 253–256.Google Scholar
  38. Stebbins, G. L., 1971. Chromosomal evolution in higher plants. Arnold. London.Google Scholar
  39. Ugborogho, R. E., 1983. Chrom. Numb. Rep. LXXIX, Taxon 32: 321.Google Scholar
  40. Veyret, Y., 1974, Quelques données pour la biosystématique de pervenches Malgaches (genre Catharanthus G, Don). Candollea 29: 297–307.Google Scholar
  41. Wijnands. D. O., 1983, The botany of the Commelins. Balkema, Rotterdam.Google Scholar
  42. Zwetsloot, H. J. C., 1981, A revision of Farquharia Stapf and Funtumia Stapf, Meded. Landbouwhogeschool 81 16.Google Scholar

Copyright information

© Dr W. Junk Publishers 1985

Authors and Affiliations

  • F. M. Van der Laan
    • 1
  • J. C. Arends
    • 1
  1. 1.Department of Plant TaxonomyAgricultural UniversityWageningenThe Netherlands

Personalised recommendations