Advertisement

Genetica

, Volume 89, Issue 1–3, pp 47–65 | Cite as

Enzyme heterozygosity, metabolism, and developmental stability

  • Jeffry B. Mitton
Article

Abstract

Developmental homeostasis, measured as either fluctuating asymmetry or variance of morphological characters, increases with enzyme heterozygosity in many, but not all, natural populations. These results have been reported forDrosophila, monarch butterflies, honeybees, blue mussels, side-blotched lizards, killifish, salmonid fishes, guppies, Sonoran topminnows, herring, rufous-collared sparrows, house sparrows, brown hares, white-tailed deer, and humans. Because heterozygosity at a few loci can not predict heterozygosity of the entiry genome, these loci must be detecting localized zones that influence the developmental environment.

Studies of malate dehydrogenase in honeybees,Apis mellifera, and lactate dehydrogenase in killifish,Fundulus heteroclitus, revealed that developmental homeostasis varied with heterozygosity of individual loci. Heterozygotes differed from homozygotes in fluctuating asymmetry, morphological variance, and in correlations between morphological characters.

The protein loci in these studies code for enzymes, and therefore do not directly influence morphological characters. However, some enzymatic loci substantially influence metabolism, and contribute to variation in the amount of energy available for development and growth. This argument can be made most convincingly for the LDH polymorphism in killifish. LDH genotypes differ in enzyme kinetic properties that measure differences in physiological efficiency, and these differences produce measurable and predictable differences in physiology and development. Under environmental conditions which impose a stress upon development, genotypes at these loci may have different amounts of energy available for development, and consequently exhibit different levels of developmental homeostasis.

Key words

developmental homeostasis enzyme heterozygosity physiological efficiency routine metabolic cost 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allard, R. W., 1975. The mating system and microevolution. Genetics 79s: 115–126.Google Scholar
  2. Baker, C. M. A. & C. Manwell, 19077. Heterozygosity of the sheep: Polymorphism of ‘malic enzyme’, isocitrate dehydrogenase (Nadp), catalase and esterase. Aust. J. Biol. Sci. 30: 127–140.Google Scholar
  3. Bayne, B. L. & R. C. Newell, 1983. Physiological energetics in marine molluscs. In A. S. M. Saleudden and K. M. Wilburg (eds.) The Mollusca 4: 407–515. Academic Press, New York.Google Scholar
  4. Beachman, T. D. & R. E. Withler, 1985. Heterozygosity and morphological variability of chum salmon (Oncorhynchus keta) in southern British Columbia. Heredity 54: 313–322.Google Scholar
  5. Beacham, T. D. & R. E. Withler, 1987. Developmental stability and heterozygosity in chum (Oncorhynchus keta) and pink (Oncorhynchus gorbuscha) salmon. Can. J. Zool 65: 1823–1826.Google Scholar
  6. Beacham, T. D., 1991. Developmental stability, heterozygosity, and genetic analysis of morphological variation in pink salmon ‘Oncorhynchus gorbuscha’. Can. J. Zool. 69: 274–278.Google Scholar
  7. Beardmore, J. A. & S. A. Shami, 1979. Heterozygosity and the optimum phenotype under stabilising selection. Aquilo. Ser. Zool. 20: 100–110.Google Scholar
  8. Bijlsma-Meeles, E. & R. Bijlsma, 1988. The alcohol dehydrogenase polymorphism inDrosophila melanogaster. Fitness measurements and predictions under conditions with no alcohol stress. Genetics 120: 743–753.PubMedGoogle Scholar
  9. Booth, C. L., P. S. Woodruff & S. J. Gould, 1990. Lack of significant associations between allozyme heterozygosity and phenotypic traits in the land snailCerion. Evolution 44: 210–213.CrossRefGoogle Scholar
  10. Bottini, E., F. Gloria-Bottini, P. Lucarelli, Al Polzonetti, F. Santoro & A. Ververi, 1979. Genetic polymorphisms and intrauterine development: Evidence of decreased heterozygosity in light for dates human newborn babies. Experientia 35: 1565–1567.PubMedCrossRefGoogle Scholar
  11. Bruckner, D., 1976. The influence of genetic variability on wing symmetry in honeybees. (Apis mellifera). Evolution 30: 100–108.CrossRefGoogle Scholar
  12. Chakraborty, R., 1981. The distribution of the number of heterozygous loci in an individual in natural populations. Genetics 98: 461–466.PubMedGoogle Scholar
  13. Chakraborty, R., 1987. Biochemical heterozygosity and phenotypic variability of polygenic traits. Heredity 59: 19–28.PubMedGoogle Scholar
  14. Chakraborty, R. & N. Ryman, 1983. Relationship of mean and variance of genotypic values with heterozygosity per individual in a natural population. Genetics. 103: 149–152.PubMedGoogle Scholar
  15. Clarke, G. M., G. W. Brand & M. J. Whitten, 1986. Fluctuating asymmetry: A technique for measuring developmental stress caused by inbreeding. Aust. J. Biol. Sci. 39: 145–153.Google Scholar
  16. Clarke, G. M., B. P. Oldroyd & P. L. Hunt, 1992. The genetic basic of developmental stability inApis mellifera: heterozygosity versus genic balance. Evolution 46: 753–762.CrossRefGoogle Scholar
  17. Clarke, G. M. & J. A. McKenzie, 1987. Developmental stability of insecticide resistant phenotypes in the blowfly: A result of canalizing natural selection. Nature 325: 345–346.CrossRefGoogle Scholar
  18. Coelho, J. R. & J. B. Mitton, 1988. Oxygen consumption during hovering is associated with genetic variation of enzymes in honey-bees. Functional Ecology 2: 141–146.Google Scholar
  19. Cothran, E. G., R. Chesser, M. H. Smith & P. E. Johns, 1983. Influences of genetic variability and maternal factors on fetal growth in white-tailed deer. Evolution 37: 282–291.CrossRefGoogle Scholar
  20. Danzmann, R. G., M. M. Ferguson & F. W. Allendorf, 1987. Heterozygosity and oxygen-consumption rate as predictors of growth and developmental rate in rainbow trout. Physiol. Zool. 60: 211–220.Google Scholar
  21. Danzmann, R. G., M. M. Ferguson & F. W. Allendorf, 1988. Heterozygosity and components of fitness in a strain of rainbow trout. Biol. J. Linn. Soc. 39: 285–304.Google Scholar
  22. Diehl, W. J., 1989. Genetics of carbohydrate metabolism and growth inEisemia foetida (Oligochataea: Lumbricidae). Heredity 61: 379–387.Google Scholar
  23. Diehl, W. J., P. M. Gaffney & R. K. Koehn, 1986. Physiological and genetic aspects of growth in the musselMytilus edulis. I. Oxygen consumption, growth, and weight loss. Physiol. Zool. 59: 201–211.Google Scholar
  24. Diehl, W. P., P. M. Gaffney, J. H. McDonald & R. K. Koehn, 1985. Relationship between weight standardized oxygen consumption and multiple-locus heterozygosity in the marine musselMytilus edulis L. (Mollusca), pp. 531–536 in Proceedings of the 19th European Marine Biology Symposium, edited by P. Gibbs. Cambridge University Press, Cambridge.Google Scholar
  25. DiMichele, L., K. Paynter & D. A. Powers, 1991. Lactate dehydrogenase-B allozymes directly affect development ofFundulus heteroclitus. Science 253: 898–900.PubMedGoogle Scholar
  26. DiMichele, L. & D. A. Powers, 1991. Developmental heterochrony and differential mortality in the model teleost,Fundulus heteroclitus. Physiological Zoology 64: 1426–1443.Google Scholar
  27. DiMichele, L. & D. A. Powers, 1982a. Physiological basis for swimming endurance differences between LDH-B genotypes ofFundulus heteroclitus. Science 216: 1014–1016.PubMedGoogle Scholar
  28. DiMichele, L. & D. A. Powers, 1982b. LDH-B genotype specific hatching times ofFundulus heteroclitus embryos. Nature 296: 560–563.CrossRefGoogle Scholar
  29. DiMichele, L. & D. A. Powers, 1984. Developmental and oxygen consumption differences between LDH-B genotypes ofFundulus heteroclitus and their effect on hatching times. Physiol. Zool. 57: 52–56.Google Scholar
  30. Dobzhansky, Th. & B. Wallace, 1953. The genetics of homeostasis inDrosophila. Proc. Natl. Acad. Sci. 39: 162–171.PubMedGoogle Scholar
  31. Eanes, W. F., 1978. Morphological variance and enzyme heterozygosity in the monarch butterfly. Nature 276: 263–264.CrossRefGoogle Scholar
  32. Eanes, W. F., 1981. Enzyme heterozygosity and morphological variance. Nature 290: 609–610.CrossRefGoogle Scholar
  33. Fleischer, R. C., R. F. Johnston & W. J. Klitz, 1983. Allozymic heterozygosity and morphological variation in house sparrows. Nature 304: 628–630.PubMedCrossRefGoogle Scholar
  34. Garton, D. W., 1984. Relationship between multiple locus heterozygosity and physiological energetics of growth in the estuarine gastropodThais haemastoma. Physiol. Zool. 57: 530–543.Google Scholar
  35. Garton, D. W., R. K. Koehn & T. M. Scott, 1984. Multiple-locus heterozygosity and the physiological energetics of growth in the coot clam,Mulinia lateralis, from a natural population. Genetics: 445–455.Google Scholar
  36. Gajardo, G. M. & J. A. Beardmore, 1989. Ability to switch reproductive mode inArtemia is related to maternal heterozygosity. Mar. Ecol. Prog. Ser. 55: 191–195.Google Scholar
  37. Govindaraju, D. R. & B. P. Dancik, 1987. Allozyme heterozygosity and homeostasis in germinating seeds of jack pine. Heredity 59: 279–283.Google Scholar
  38. Hall, J. G. & R. K. Koehn, 1983. The evolution of enzyme catalytic efficiency and adaptive inference from steady-state kinetic data. Evol. Biol. 16: 53–96.Google Scholar
  39. Handford, P., 1980. Heterozygosity at enzyme loci and morphological variation. Nature 286: 261–262.PubMedCrossRefGoogle Scholar
  40. Hartl, G. B., G. Lang, F. Klein & R. Willing, 1991. Relationships between allozymes, heterozygosity and morphological characters in red deer (Cervus elaphus), and the influence of selective hunting on allele frequency distributions. Heredity 66: 343–350.PubMedGoogle Scholar
  41. Hartl, G. B., F. Suchentrunk, R. Willing & R. Petznek, 1993. Allozyme heterozygosity and fluctuating asymmetry in the brown hare (Lepus europaeus): a test of the developmental homeostasis hypothesis. (in preparation).Google Scholar
  42. Hawkins, A. J. S., B. L. Bayne & A. J. Day, 1986. Protein turnover, physiological energetics and heterozygosity in the blue musselMytilus edulis: the basis of variable age-specific growth. Proc. R. Soc. Lond. B 229: 161–176.CrossRefGoogle Scholar
  43. Hawkins, A. J. S., B. L. Bayne, A. J. Day, J. Rusing & C. M. Worrall, 1989. Genotype-dependent interrelations between energy metabolism, protein metabolism and fitness, pp. 283–292 in Reproduction, Genetics and Distributions of Marine Organisms, edited by J. S. Ryland and P. A. Tyler. Olsen and Olsen, Fredensborg, Denmark.Google Scholar
  44. Kasule, F. K. & L. M. Cook, 1988. Phenotypic variability and heterozygosity at an esterase locus in the mosquitoAedus aegypti. Heredity 61: 427–431.PubMedGoogle Scholar
  45. King, D. P. F., 1985. Enzyme heterozygosity associated with anatomical character variance and growth in the herring (Clupea harengus L.). Heredity 54: 289–296.PubMedGoogle Scholar
  46. Kobyliansky, E. & G. Livshits, 1985. Differential fertility and morphological constitution of spouses. Z. Morph. Anthrop. 76: 95–105.Google Scholar
  47. Koehn, R. K., 1991. The cost of enzyme synthesis in the genetics of energy balance and physiological performance. Biol. J. Linn. Soc. 44: 231–247.Google Scholar
  48. Koehn, R. K. & B. L. Bayne, 1988. Towards a physiological and genetical understanding of the energetics of the stress response. Biol. J. Linn. Soc. 37: 157–171.CrossRefGoogle Scholar
  49. Koehn, R. K., W. J. Diehl & T. M. Scott, 1988. The differential contribution by individual enzymes of glycolysis and protein catabolism to the relationship between heterozygosity and growth rate in the coot clam,Mulinia lateralis. Genetics 118: 121–130.PubMedGoogle Scholar
  50. Koehn, R. K. & P. M. Gaffney, 1984. Genetic heterozygosity and growth rate inMytilus edulis. Mar. Biol. 82: 1–7.CrossRefGoogle Scholar
  51. Koehn, R. K. & S. E. Shumway, 1982. A genetic/physiological explanation for differential growth rate among individuals of the American oyster,Crassostrea virginica (Gmelin). Mar. Biol. Letters 3: 35–42.Google Scholar
  52. Koehn, R. K., A. J. Zera & J. G. Hall, 1983. Enzyme polymorphism and natural selection, pp. 115–136 in Evolution of Genes and Proteins, edited by M. Nei and R. K. Koehn. Sinauer Associates Inc. Sunderland, Mass.Google Scholar
  53. Leary, R. F., F. W. Allendorf & K. L. Knudsen, 1983. Developmental stability and enzyme heterozygosity in rainbow trout. Nature 301: 71–72.PubMedCrossRefGoogle Scholar
  54. Leary, R. F., F. W. Allendorf & K. L. Knudsen, 1984. Superior developmental stability of heterozygotes at enzyme loci in salmonid fishes. Amer. Natur. 124: 540–551.CrossRefGoogle Scholar
  55. Leary, R. F., F. W. Allendorf & K. L. Knudsen, 1985. Inheritance of meristic variation and the evolution of developmental stability in rainbow trout. Evolution 39: 308–314.CrossRefGoogle Scholar
  56. Lerner, I. M., 1954. Genetic homeostasis. Oliver and Boyd, Edingburgh, 154 pp.Google Scholar
  57. Livshits, G. & E. Kobyliansky, 1984. Biochemical heterozygosity as a predictor of developmental homeostasis in man. Ann. Hum. Genet. 48: 173–184.PubMedGoogle Scholar
  58. Livshits, G. & E. Kobyliansky, 1985. Lerner's concept of developmental homeostasis and the problem of heterozygosity level in natural populations. Heredity 55: 341–353.PubMedGoogle Scholar
  59. Makaveev, T., I. Venev & M. Baulov, 1978. Investigations on activity level and polymorphisms of some blood enzyme in farm animals with different growth energy. II. Correlations between homo- and heterozygosity of some protein and enzyme phenotypes and fattening ability and slaughter indices in various breeds of fattened pigs. Genet. Sel. 10: 229–236.Google Scholar
  60. McAndrew, B. J., R. D. Ward & J. A. Beardmore, 1982. Lack of relationship between morphological variance and enzyme heterozygosity in the plaice,Pleuronectes platessa. Heredity 48: 117–125.PubMedGoogle Scholar
  61. Messier, S. & J. B. Mitton. Heterozygosity at the malate dehydrogenase locus and fluctating asymmetry inApis mellifera. Evolution, in review.Google Scholar
  62. Mitton, J. B., 1978. Relationship between heterozygosity for enzyme loci and variation of morphological characters in natural populations. Nature 273: 661–662.PubMedCrossRefGoogle Scholar
  63. Mitton, J. B., 1993. Theory and data pertinent to the relationship between heterozygosity and fitness, in The Natural History of Inbreeding and Outbreeding, edited by W. Shields and N. Thornhill. University of Chicago Press.Google Scholar
  64. Mitton, J. B., C. Carey & T. D. Kocher, 1986. The relation of enzyme heterozygosity to standard and active oxygen consumption and body size of tiger salamanders,Ambystoma tigrinum. Physiol. Zool. 59: 574–582.Google Scholar
  65. Mitton, J. B. & M. C. Grant, 1984. Associations among protein heterozygosity, growth rate, and developmental homeostasis. Ann. Rev. Ecol. Syst. 15: 479–499.CrossRefGoogle Scholar
  66. Mitton, J. B. & R. K. Koehn, 1975. Genetic organization and adaptive response of allozymes to ecological variables inFundulus heteroclitus. Genetics 79: 97–111.PubMedGoogle Scholar
  67. Mitton, J. B. & R. K. Koehn, 1985. Shell shape variation in the blue mussel,Mytilus edulis L., and its association with enzyme heterozygosity. J. Exp. Mar. Biol. Ecol. 90: 73–80.CrossRefGoogle Scholar
  68. Mitton, J. B. & B. A. Pierce, 1980. The distribution of individual heterozygosity in naural populations. Genetics 95: 1043–1054.PubMedGoogle Scholar
  69. Mukai, T., L. E. Mettler & S. Chigusa, 1971. Linkage disequilibrium in a local population ofDrosophila melanogaster. Proc. Natl. Acad. Sci. USA 68: 1065–1069.PubMedGoogle Scholar
  70. Mukai, T. & O. Yamaguchi, 1974. The genetic structure of natural populations ofDrosphila melanogaster. XI. Genetic variability in a local population. Genetics 76: 339–366.PubMedGoogle Scholar
  71. Parsons, P. A., 1971. Extreme environment heterosis and genetic loads. Heredity 26: 479–483.PubMedGoogle Scholar
  72. Parsons, P. A., 1973. Genetics of resistance to environmental stresses inDrosophila populations. Ann. Rev. Genet. 7: 239–265.PubMedCrossRefGoogle Scholar
  73. Parsons, P. A., 1987. Evolutionary rates under environmental stress. Evolutionary Biology 21: 311–347.Google Scholar
  74. Paynter, K. T., l. DiMichele, S. C. Hand & D. A. Powers, 1991. Metabolic implications of LDH-B genotype during early development inFundulus heteroclitus. J. Exp. Zool. 257: 24–33.CrossRefGoogle Scholar
  75. Pierce, B. A. & J. B. Mitton, 1982. Allozyme heterozygosity and growth in the tiger salamander,Ambystoma tigrinum. J. Hered. 73: 250–253.PubMedGoogle Scholar
  76. Place, A. R. & D. A. Powers, 1979. Genetic variation and relative catalytic efficiencies: LDH-B allozymes ofFundulus heteroclitus. Proc. Natl. Acad. Sci. U.S.A. 76: 2354–2358.PubMedGoogle Scholar
  77. Powers, D. A., L. DiMichele & A. R. Place, 1983. The use of enzyme kinetics to predict differences in cellular metabolism, developmental rate, and swimming performance between LDH-B genotypes of the fish,Fundulus heteroclitus, in Isozymes: Current Topics in Biological and Medical Research. Volume 10, edited by G. Whitt and G. C. Markert. Academic Press, New York.Google Scholar
  78. Powers, D. A., G. S. Greaney & A. R. Place, 1979. Physiological correlation between lactate dehydrogenase genotype and haemoglobin function in killifish. Nature 277: 240–241.PubMedCrossRefGoogle Scholar
  79. Powers, D. A. & A. R. Place, 1978. Biochemical genetics ofFundulus heteroclitus (L.). I. Temporal and spatial variation in gene frequencies of Ldh-B, Mdh-A, Gpi-B, and Pgm-A. Biochem. Genet. 16: 593–607.PubMedCrossRefGoogle Scholar
  80. Prakash, S., 1974. Gene differences between the Sex Ratio and Standard gene arrangements of the X chromosome and linkage disequilibrium between the Standard gene arrangements and the X chromosome inDrosophila pseudoobscura. Genetics 77: 795–804.PubMedGoogle Scholar
  81. Prakash, S. & R. C. Lewontin, 1968. A molecular approach to the study of genic heterozygosity in natural populations. III. Direct evidence of coadaptation in gene arrangements ofDrosophila. Proc. Natl. Acad. Sci. U. S. A. 59: 398–450?PubMedGoogle Scholar
  82. Prakash, S. & R. C. Lewontin, 1971. A molecular approach to the study of genic heterozygosity in natural populations. V. Further direct evidence of coadaptations in inversions ofDrosophila. Genetics 69: 405–408.PubMedGoogle Scholar
  83. Prakash, S. & R. B. Merritt, 1972. Direct evidence of genic differentiation between Sex Ratio and Standard gene arrangements of X chromosome inDrosophila pseudoobscura. Genetics 72: 169–175.PubMedGoogle Scholar
  84. Policansky, D. & E. Zouros, 1977. Gene differences between the sex ratio and standard gene arrangements on the X chromosome inDrosophila persimilis. Genetics 85: 507–511.PubMedGoogle Scholar
  85. Powers, D. A., M. Smith, I. Gonzalez-Villasenor, L. DiMichele, D. Crawford, G. Bernardi & T. Lauerman, 1993. A multidisciplinary approach to the selectionist/neutralist controversy using the model teleostFundulus heteroclitus. Oxford Surveys in Evolutionary Biology, Oxford University Press.Google Scholar
  86. Quattro, J. M. & R. C. Vrijenhoek, 1989. Fitness differences among remnant populations of the endangered sonoran topminnow. Science 245: 976–978.PubMedGoogle Scholar
  87. Robertson, F. W. & E. C. Reeve, 1952. Heterozygosity, environmental variation and heterosis. Nature 170: 286–287.PubMedGoogle Scholar
  88. Rodhouse, P. G. & P. M. Gaffney, 1984. Effect of heterozygosity on metabolism during starvation in the American oyster,Crassostrea virginica. Mar. Biol. 80: 179–188.CrossRefGoogle Scholar
  89. Rodhouse, P. G., J. H. McDonald, R. I. E. Newell & R. K. Koehn, 1986. Gamete production, somatic growth and multiple locus heterozygosity inMytilus edulis L. Mar. Biol. 90': 209–214.CrossRefGoogle Scholar
  90. Rogers, S., R. Wells & M. Rechsteiner, 1986. Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Science 234: 364–368.PubMedGoogle Scholar
  91. Scott, T. M. & R. K. Koehn, 1990. The effect of environmental stress on the relationship of heterozygosity to growth rate in the coot clamMulinia lateralis (Say). J. Exp. Mar. Biol. Ecol., 135: 109–116.CrossRefGoogle Scholar
  92. Scribner, K. T., M. H. Smith & P. E. Johns, 1989. Environmental and genetic components of antler growth in white-tailed deer. J. Mamm. 70: 284–291.Google Scholar
  93. Scribner, K. T. & M. H. Smith, 1990. Genetic variability and antler development, pp 460–473 in Horns, Pronghorns, and Antlers, edited by G. A. Bubenik and A. B. Bubenik. Springer, New York.Google Scholar
  94. Serradilla, J. M. & F. J. Ayala, 1983. Alloprocoptic selection: A mode of natural selection promoting polymorphism. Proc. Natl. Acad. Sci. USA 80: 2022–2025.PubMedGoogle Scholar
  95. Singh, S. M. & E. Zouros, 1978. Genetic variation associated with growth rate in the American oyster (Crassostrea virginica). Evolution 32: 342–353.CrossRefGoogle Scholar
  96. Smith, M. H., K. T. Scribner, P. E. Johns & O. E. Rhodes, Jr., 1991. Genetics and Antler development. Proc. 18th Congr. Internat. Union Game Biol., Krakow, Poland.Google Scholar
  97. Soulé, M. E., 1967. Phenetics of natural populations. II. Asymmetry and evolution in a lizard. Amer. Natur. 101: 141–160.CrossRefGoogle Scholar
  98. Soulé, M. E., 1971. The variation problem: the gene-flow-variation hypothesis. Taxon 20: 37–50.CrossRefGoogle Scholar
  99. Soulé, M. E., 1979. Heterozygosity and developmental stability: another look. Evolution 33: 396–401.CrossRefGoogle Scholar
  100. Soulé, M. E., 1982. Allomeric variation. 1. The theory and some consequences. Amer. Natur. 120: 751–764.CrossRefGoogle Scholar
  101. Soulé, M. E. & S. Y. Yang, 1974. Genetic variation side-blotched lizards on islands in the Gulf of California. Evolution 27: 593–600.CrossRefGoogle Scholar
  102. Strauss, R. E., 1989. Associations between genetic heterozygosity and morphological variability in freshwater sculpins, genusCottus (Teleostei: Cottidae). Biochem. Syst. Ecol. 17: 333–340.CrossRefGoogle Scholar
  103. Strauss, R. E., 1991. Correlations between heterozygosity and phenotypic variability inCottus (Teleostei: Cottidae): character components. Evolution 45: 1950–1956.CrossRefGoogle Scholar
  104. Teska, W. R. M. H. Smith & J. M. Novak, 1990. Food quality, heterozygosity, and fitness correlates inPeromyscus polionotus. Evolution 44: 1318–1325.CrossRefGoogle Scholar
  105. Van Valen, L., 1978. The statistics of variation. Evol. Theory 4: 33–43.Google Scholar
  106. Vrijenhoek, R. C. & S. Lerman, 1982. Heterozygosity and developmental stability under sexual and asexual breeding systems. Evolution 36: 768–767.CrossRefGoogle Scholar
  107. Ward, R. D., M Sarfarazi, C. Azimi-Garakani & J. A. Beardmore, 1985. Population genetics of polymorphisms in Cardiff newborn: Relationship betwene blood group and allozyme heterozygosity and birth weight. Hum. Hered. 35: 171–177.PubMedCrossRefGoogle Scholar
  108. Watt, W. B., 1985. Bieonergetics and evolutionary genetics: opportunities for new synthesis. Amer. Natur. 125: 118–143.CrossRefGoogle Scholar
  109. Watt, W. B., 1986. Power and efficiency as indexes of fitness in matabolic organization. Amer. Natur. 127: 629–653.CrossRefGoogle Scholar
  110. Watt, W. B., 1992. Eggs, enzymes, and evolution-natural genetic variants change insect fecundity. Proc. Natl. Acad. Sci. USA 89: 10608–10612.PubMedGoogle Scholar
  111. Wooten, M. C. & M. H. Smith, 1986. Fluctuating asymmetry and genetic variability in a natural population ofMus musculus. J. Mammalogy 67: 725–732.Google Scholar
  112. Yezerinac, S. M., S. C. Lougheed & P. Handford, 1992. Morphological variability and enzyme heterozygosity: individual and population level correlations. Evolution 46: 1959–1964.CrossRefGoogle Scholar
  113. Zouros, E. & D. W. Foltz, 1987. The use of allelic isozyme variation for the study of heterosis, pp 2–59 in Isozymes: Current Topics in Biological and Medical research, Volume 13, edited by M. C. Rattazzi, J. G. Scandalios and G. S. Whitt. Alan R. Liss, Inc., New York.Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • Jeffry B. Mitton
    • 1
  1. 1.Department of Environmental, Population, and Organismic BiologyThe University of ColoradoBoulderUSA

Personalised recommendations