, Volume 67, Issue 3, pp 161–170

Allozyme and chromosomal polymorphism ofDrosophila buzzatii in Brazil and Argentina

  • J. S. F. Barker
  • F. de M. Sene
  • P. D. East
  • M. A. Q. R. Pereira


Allozyme polymorphism in the colonizing populations ofD. buzzatii in Australia is quite low (average heterozygosity of 0.051 ± 0.025), but no comparative data are available for the species in other introduced populations or in its presumed area of origin, the Chaco of Argentina. For 12 localities in Argentina and five in Brazil, average expected heterozygosity is not significantly different from that in Australia. However, there appears to have been a loss of genetic variability on introduction of the species to Australia, as five loci are variable in South America that are monomorphic in Australia, and one additional allele was detected at each of six other loci in South America. Our results for inversion polymorphism in Argentina are consistent with previous data, but some Brazilian populations apparently have reduced inversion polymorphism. With the exception of those nearest the Chaco, these Brazilian populations may have resulted from passive colonization within historical times due to transport by man, and could represent both primary and secondary colonizations. However, the allozyme data do not readily fit a colonization hypothesis, and theD. buzzatii populations of both northeast and southeast Brazil may be relic populations. More detailed study of inversion and allozyme polymorphism in Brazil is necessary to provide critical data on the evolutionary history of this species.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ayala, F. J., Powell, J. R., Tracey, M. L., Mourão, C. A. & Pérez-Salas, S., 1972. Enzyme variability in the Drosophila willistoni group. IV. Genetic variation in natural populations of Drosophila willistoni. Genetics 70: 113–139.PubMedPubMedCentralGoogle Scholar
  2. Ayala, F. J., Tracey, M. L., Barr, L. G., McDonald, J. F. & Pérez-Salas, S., 1974. Genetic variation in natural populations of five Drosophila species and the hypothesis of the selective neutrality of protein polymorphisms. Genetics 77: 343–384.PubMedPubMedCentralGoogle Scholar
  3. Barker, J. S. F., 1977. Cactus-breeding Drosophila — A system for the measurement of natural selection. In: F. B. Christiansen & T. Fenchel. eds. Measuring selection in natural populations, Vol. 19 of Lecture Notes in Biomathematics, pp. 403–430. Springer. Berlin.CrossRefGoogle Scholar
  4. Barker, J. S. F., 1981. Selection at allozyme loci in cactophilic Drosophila. In: J. B. Gibson & J. G. Oakeshott, eds, Genetic studies of Drosophila populations, pp. 161–184. Australian National University. Canberra.Google Scholar
  5. Barker, J. S. F. & Mulley, J. C., 1976. Isozyme variation in natural populations of Drosophila buzzatii. Evolution 30: 213–233.CrossRefGoogle Scholar
  6. Carson, H. L., 1959. Genetic conditions which promote or retard the formation of species. Cold Spring Harbor Symp. quant. Biol. 24: 87–105.CrossRefPubMedGoogle Scholar
  7. Carson, H. L. & Wasserman, M., 1965. A widespread chromosomal polymorphism in a widespread species, Drosophila buzzatii. Am. Natur. 99: 111–115.CrossRefGoogle Scholar
  8. Dobzhansky, Th., 1951. Genetics and the origin of species. 3rd ed., Columbia Univ. Press, N.Y.Google Scholar
  9. Fontdevila, A., Ruiz, A., Alonso, G. & Ocaña, J., 1981. Evolutionary history of Drosophila buzzatii. I. Natural chromosomal polymorphism in colonized populations of the Old World. Evolution 35: 148–157.CrossRefGoogle Scholar
  10. Fontdevila, A., Ruiz, A., Ocaña, J. & Alonso, G., 1982. Evolutionary history of Drosophila buzzatii. II. How much has chromosomal polymorphism changed in colonization. Evolution 36: 843–851.CrossRefGoogle Scholar
  11. Heed, W. B., 1981. Central and marginal populations revisited. Drosophila Inf. Serv. 56: 60–61.Google Scholar
  12. Koehn, R. K. & Eanes, W. F., 1978. Molecular structure and protein variation within and among populations. Evol. Biol. 11: 39–100.CrossRefGoogle Scholar
  13. Lewontin, R. C., 1957. The adaptations of populations to varying environments. Cold Spring Harbor Symp. quant. Biol. 22:395–407.CrossRefPubMedGoogle Scholar
  14. Lewontin, R. C., 1974. The genetic basis of evolutionary change. Columbia Univ. Press, N.Y.Google Scholar
  15. Mann, J., 1970. Cacti naturalised in Australia and their control. S. G. Reid, Government Printer. Brisbane.Google Scholar
  16. Nei, M., 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583–590.PubMedPubMedCentralGoogle Scholar
  17. Pereira, M. A. Q. R., Vilela, C. R. & Sene, F. M., 1983. Notes on breeding and feeding sites of some species of the repleta group of the genus Drosophila (Diptera. Drosophilidae). Ci. e Cult., São Paulo 35: 1313–1319.Google Scholar
  18. Poulik, M. D., 1957. Starch gel electrophoresis in a discontinuous system of buffers. Nature 180: 1477–1479.CrossRefPubMedGoogle Scholar
  19. Ruiz, A. & Fontdevila, A., 1981. Two new chromosome arrangements in D. buzzatii. Drosophila Inf. Serv. 56: 111–114.Google Scholar
  20. Ruiz, A., Fontdevila, A. & Wasserman, M., 1982. The evolutionary history of Drosophila buzzatii. III. Cytogenetic relationships between two sibling species of the buzzatii cluster. Genetics 101: 503–518.PubMedPubMedCentralGoogle Scholar
  21. Sene, F. de M., Pereira, M. A. Q. R. & Vilela, C. R., 1982. Evolutionary aspects of cactus breeding Drosophila species in South America. In: J. S. F. Barker & W. T. Starmer, eds. Ecological genetics and evolution. The Cactus-Yeast-Drosophila model system, pp. 97–106. Academic Press Australia, Sydney.Google Scholar
  22. Sene, F. M., Val, F. C., Vilela, C. R. & Pereira, M. A. Q. R., 1980. Preliminary data on the geographical distribution of Drosophila species within morphoclimatic domains of Brazil. Papeis Avulsos Zool., S. Paulo 33: 315–326.Google Scholar
  23. Shaw, C. R. & Prasad, R., 1970. Starch gel electrophoresis of enzymes A compilation of recipes. Biochem. Genet. 4: 277–320.Google Scholar
  24. Soulé, M., 1973. The epistasis cycle: A theory of marginal populations. Ann. Rev. Ecol. Syst. 4: 165–187.CrossRefGoogle Scholar
  25. Taylor, C. E. & Powell, J. R., 1983. Population structure of Drosophila: Genetics and ecology. In: M. Ashburner, H. L. Carson & J. N. Thompson, Jr., eds. The genetics and biology of Drosophila, Vol. 3d, pp. 29–59. Academic Press, London.Google Scholar
  26. Ursprung, H. & Leone, J., 1965. Alcohol dehydrogenases: A polymorphism in Drosophila melanogaster. J. Exp. Zool. 160:147–154.CrossRefPubMedGoogle Scholar
  27. Vilela, C. R., Sene, F. de M. & Pereira, M. A. Q. R., 1980. On the Drosophila fauna of Chaco and east slopes of the Andes in Argentina. Rev. Brasil. Biol. 40: 837–841.Google Scholar
  28. Wasserman, M., 1954. Cytological studies of the repleta group. Univ. Texas Publ. 5422: 130–152.Google Scholar
  29. Wasserman, M., 1962. Cytological studies of the repleta group of the genus Drosophila: V. The mulleri subgroup. Univ. Texas Publ. 6205: 85–117.Google Scholar
  30. Wharton, L. T., 1942. Analysis of the repleta group of Drosophila. Univ. Texas Publ. 4228: 23-52.Google Scholar
  31. Zouros, E., 1973. Genic differentiation associated with the early stages of speciation in the mulleri subgroup of Drosophila. Evolution 27: 601–21.CrossRefGoogle Scholar

Copyright information

© Dr W. Junk Publishers 1985

Authors and Affiliations

  • J. S. F. Barker
    • 1
  • F. de M. Sene
    • 2
  • P. D. East
    • 1
  • M. A. Q. R. Pereira
    • 2
  1. 1.Department of Animal ScienceUniversity of New EnglandArmidaleAustralia
  2. 2.Departamento de BiologiaIBUSPSão Paulo-SPBrazil

Personalised recommendations