, Volume 68, Issue 2, pp 129–143 | Cite as

Evolutionary genetics of birds IV rates of protein divergence in waterfowl (Anatidae)

  • J. C. Patton
  • J. C. Avise


An electrophoretic comparison of proteins in 26 species of waterfowl (Anatidae), representing two major subfamilies and six subfamilial tribes, led to the following major conclusions: (1) the genetic data, analyzed phenetically and cladistically, generally support traditional concepts of evolutionary relationships, although some areas of disagreement are apparent; (2) species and genera within Anatidae exhibit smaller genetic distances at protein-coding loci than do most non-avian vertebrates of equivalent taxonomic rank; (3) the conservative pattern of protein differentiation in Anatidae parallels patterns previously reported in Passeriforme birds. If previous taxonomic assignments and ages of anatid fossils are reliable, it would appear that the conservative levels of protein divergence among living species may not be due to recent age of the family, but rather to a several-fold deceleration in rate of protein evolution relative to non-avian vertebrates.

Since it now appears quite possible that homologous proteins can evolve at different rates in different phylads, molecular-based conclusions about absolute divergence times for species with a poor fossil record should remain appropriately reserved. However, the recognition and study of the phenomenon of apparent heterogeneity in rates of protein divergence across phylads may eventually enhance our understanding of molecular and organismal evolution.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Avise, J. C. & Aquadro, C. F., 1982. A comparative summary of genetic distances in the vertebrates. Evol. Biol. 15: 151–185.Google Scholar
  2. Avise, J. C., Patton, J. C. & Aquadro, C. F., 1980a. Evolutionary genetics of birds I. Relationships among North American thrushes and allies. The Auk 97: 135–147.Google Scholar
  3. Avise, J. C., Patton, J. C. & Aquadro, C. F., 1980b. Evolutionary genetics of birds II. Conservative protein evolution in North American sparrows and relatives. Syst. Zool. 29: 323–334.CrossRefGoogle Scholar
  4. Avise, J. C., Patton, J. C. & Aquadro, C. F., 1980c. Evolutionary genetics of birds III. Comparative molecular evolution in New World warblers (Parulidae) and rodents (Cricetinae). J. Hered. 71: 303–310.Google Scholar
  5. Avise, J. C., Smith, M. H. & Selander, R. K., 1974. Biochemical polymorphism and systematics in the genus Peromyscus. VI. The boylii species group. J. Mamm. 55: 751–763.Google Scholar
  6. Ayala, F. J., Powell, J. R., Tracey, M. L., Mourao, C. A. & Perez-Salas, S., 1972. Enzyme variability in the Drosophila willistoni group. IV. Genetic variation in natural populations of Drosophila willistoni. Genetics 70: 113–139.PubMedGoogle Scholar
  7. Baker, C. M. Ann & Hanson, H. C., 1966. Molecular genetics of avian proteins VI. Evolutionary implications of blood proteins of eleven species of geese. Comp. Biochem. Physiol. 17: 997–1006.CrossRefPubMedGoogle Scholar
  8. Barrowclough, G. F. & Corbin, K. W., 1978. Genetic variation and differentiation in the Parulidae. The Auk 95: 691–702.Google Scholar
  9. Barrowclough, G. F., Corbin, K. W. & Zink, R. M., 1981. Genetic differentiation in the Procellariiformes. Comp. Biochem. Physiol. 6913: 629–632.Google Scholar
  10. Bellrose, F. C., 1976. Ducks, geese and swans of North America. Stackpole Books, Harrison, Penn.Google Scholar
  11. Brodkorb, P., 1964. Catalogue of fossil birds, part 2. Bull. Fla St. Mus. 8: 195–335.Google Scholar
  12. Corbin, K. W., Sibley, C. G., Ferguson, A., Wilson, A. C., Brush, A. H. & Ahlquist, J. E., 1974. Genetic polymorphism in New Guinea starlings of the genus Aplonis. Condor 76: 307–318.Google Scholar
  13. Dayhoff, M. O., 1972. Atlas of protein sequence and structure. National Biomedical Research Foundation, Washington, D.C.Google Scholar
  14. Delacour, J., 1954. The Waterfowl of the world. Hamlyn Publ. Group Ltd., London.Google Scholar
  15. Delacour, J. & Mayr, E., 1945. The family Anatidae. Wilson Bull. 57: 3–55.Google Scholar
  16. Farris, J. S., 1972. Estimating phylogenetic trees from distance matrices. Amer. Nat. 106: 645–668.CrossRefGoogle Scholar
  17. Graham, F., Jr., 1979. Farewell, Mexican duck. Audubon 81: 24–26.Google Scholar
  18. Gutierrez, R. J., Zink, R. M. & Yang, S. Y., 1983. Genic variation, systematic and biogeographic relationships of some galliform birds. The Auk 100: 33–47.Google Scholar
  19. Hennig, W., 1966. Phylogenetic Systematics. Univ. Illinois Press, Chicago.Google Scholar
  20. Hibbard, C. W., 1968. Paleontology. Pp. 1-26 in: J. A. King (ed.), Biology of Peromyscus (Rodentia), Spec. Pub. Am. Soc. Mamm. 2.Google Scholar
  21. Howard, H., 1964. Fossil Anseriformes. Pp. 233–326 in: J. Delacour (ed.), The Waterfowl of the world, V. 4, Country Life Ltd, London.Google Scholar
  22. Johnsgard, P. A., 1968. Waterfowl. Univ. Nebraska Press, Lincoln, Nebraska.Google Scholar
  23. Martin, R. F. & Selander, R. K., 1975. Morphological and biochemical evidence of hybridization between cave and barn swallows. Condor 77: 362–364.Google Scholar
  24. Mengel, R. N., 1964. The probable history of species formation in some northern wood warblers (Parulidae). Living Bird 3: 9–43.Google Scholar
  25. Morony, J. J., Bock, W. J. & Farrand J., Jr., 1975. Reference list of the birds of the world. Spec. Pub. Am. Mus. Nat. Hist., New York.Google Scholar
  26. Nei, M., 1971. Interspecific gene differences and evolutionary time estimated from electrophoretic data on protein identity. Am. Nat. 105: 385–398.CrossRefGoogle Scholar
  27. Nei, M., 1972. Genetic distance between populations. Am. Nat. 106: 283–292.CrossRefGoogle Scholar
  28. Nei, M., 1975. Molecular population genetics and evolution. North Holland, Amsterdam.Google Scholar
  29. Olson, S. L. & Feduccia, A., 1980. Presbyornis and the origin of the Anseriformes (Ayes: Charadriomorphae). Smithsonian Cont. Zool. 323: 1–24.Google Scholar
  30. Patton, J. C. & Avise, J. C., 1983. An empirical evaluation of qualitative Hennigian analyses of protein electrophoretic data. J. mol. Evol. 19: 244–254.CrossRefPubMedGoogle Scholar
  31. Patton, J. C., Baker, R. J. & Avise, J. C., 1981. Phenetic and cladistic analyses of biochemical evolution in peromyscine rodents. Pp. 288–308 in: Mammalian population genetics, M. H. Smith and J. Joule (eds.), Univ. Ga. Press, Athens.Google Scholar
  32. Powell, J. R., 1976. Protein variation in natural populations of animals. Evol. Biol. 8: 79–119.Google Scholar
  33. Prager, E. M. & Wilson, A. C., 1975. Slow evolutionary loss of the potential for interspecific hybridization in birds: a manifestation of slow regulatory evolution. Proc. natn. Acad. Sci. U.S.A. 72: 200–204.Google Scholar
  34. Robbins, C. S., Bruun, B. & Zim, H. S., 1966. Birds of North America. Golden Press, New York.Google Scholar
  35. Rogers, J. S., 1972. Measures of genetic similarity and genetic distance., Studies in Genetics VII. Univ. Texas Publ. 7213: 145–153.Google Scholar
  36. Romer, A. S., 1966. Vertebrate Paleontology. Univ. of Chicago Press, Chicago, Ill.Google Scholar
  37. Sarich, V. M., 1977. Rates, sample sizes, and the neutrality hypothesis for electrophoresis in evolutionary studies. Nature 265: 24–28.CrossRefPubMedGoogle Scholar
  38. Selander, R. K., 1976. Genic variation in natural populations. Pp. 21–45 in: Molecular evolution, F. J. Ayala (ed.), Sinauer, Sunderland, Massachusetts.Google Scholar
  39. Selander, R. K., Smith, M. H., Yang, S. Y., Johnson, W. E. & Gentry, J. B., 1971. Biochemical polymorphism and systematics in the genus Peromyscus I. Variation in the old-field mouse (Peromyscus polionotus). Studies in Genetics VI. Univ. Texas Publ. 7T03: 43–90.Google Scholar
  40. Sibley, C. G. & Ahlquist, J. E., 1972. A comparative study of the egg-white proteins of non-passerine birds. Peabody Mus. Nat. Hist. Bull. 39, Yale University, New Haven, Conn.Google Scholar
  41. Smith, J. K. & Zimmerman, E. G., 1976. Biochemical genetics and evolution of North American blackbirds, family Icteridae. Comp. Biochem. Physiol. 53B: 319–324.Google Scholar
  42. Sneath, P. H. A. & Sokal, R. R., 1973. Numerical Taxonomy. W. H. Freeman, San Francisco.Google Scholar
  43. Sokal, R. R., 1975. Mayr on cladism — and his critics. Syst. Zool. 24: 257–262.CrossRefGoogle Scholar
  44. Wetmore, A., 1938. A fossil duck from the Eocene of Utah. J. Paleont. 12: 280–283.Google Scholar
  45. Wilson, A. C., Carlson, S. S. & White, T. J., 1977. Biochemical evolution. Ann. Rev. Biochem. 46: 573–639.CrossRefPubMedGoogle Scholar
  46. Woolfenden, G. E., 1961. Postcranial osteology of the waterfowl. Bull. Florida State Mus. 6: 1–129.Google Scholar

Copyright information

© Dr W. Junk Publishers 1986

Authors and Affiliations

  • J. C. Patton
    • 1
  • J. C. Avise
    • 1
  1. 1.Department of Molecular and Population GeneticsUniversity of GeorgiaAthensUSA

Personalised recommendations