Experimental Brain Research

, Volume 81, Issue 3, pp 609–618 | Cite as

Vomeronasal activation by urine in the primateMicrocebus murinus: A 2 DG study

  • A. Schilling
  • J. Serviere
  • G. Gendrot
  • M. Perret


The vomeronasal system (VNS) seems to be functional in some primates and involved in the detection of urinary signals. Anterograde tracing (WGA-HRP) and evoked metabolic activity (2-DG method) were used in order to clarify the conditions under which the VNS is activated in the prosimian mouse lemur. After WGA-HRP deposition at one of the oral entries of the nasopalatine duct, reaction product was observed within the accessory bulb (AOB). 2-DG experiments show that urine in the volatile phase stimulates the main but not the accessory bulb (AOB). Liquid urine produced bilateral or unilateral activation of AOB depending on whether the stimulation was exclusively unilateral or not; under the same conditions distilled water could not produce 2-DG labelling. It is concluded that VNS is activated by urine in the liquid but not the volatile phase. The biological implications of these results are discussed.

Key words

Vomeronasal system Accessory olfactory bulb Urine 2DG Autoradiography WGA HRP Primate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bailey KM (1978) Flehmen in the ring railed lemur (Lemur catta). Behaviour 65:309–319Google Scholar
  2. Baker H, Spencer RF (1986) Transneuronal transport of peroxidase-conjugated wheat germ agglutinin (WGA-HRP) from the olfactory epithelium to the brain of the adult rat. Exp Brain Res 63:461–473PubMedCrossRefGoogle Scholar
  3. Beauchamp GK, Wellington JL, Wysocki CJ, Brand JG, Kubie JL, Smith AB (1980) Chemical communication in the guinea pig: urinary components of low volatility and their access to the vomeronasal organ. In: Müller-Schwarze D, Silverstein AM (eds) Chemical signals in vertebrates and aquatic invertebrates. Plenum Press, New York, pp 327–339Google Scholar
  4. Dutrillaux B (1979) Chromosomal evolution in primates: tentative phylogeny from Microcebus murinus (Prosimian) to man. Hum Gen 48:251–314CrossRefGoogle Scholar
  5. Eccles R (1982) Autonomic innervation of the vomeronasal organ of the cat. Physiol Behav 28:1011–1015PubMedCrossRefGoogle Scholar
  6. Gayoso MJ, Garrido M, Diaz-Flores SL (1978) Bulbo olfactorio accesorio organizacion y ultra estrutura. Morphol Normal Pathol Sec A 2:291–329Google Scholar
  7. Halpern M (1987) The organization and function of the vomeronasal system. Ann Rev Neurosci 10:325–362PubMedCrossRefGoogle Scholar
  8. Hunter AJ, Fleming D, Dixson AF (1984) The structure of the vomeronasal organ and nasopalatine ducts in Aotus trivirgatus and some other primate species. J Anat 138:217–225PubMedGoogle Scholar
  9. Itaya SK (1987) Anterograde transynaptic transport of WGA-HRP in rat olfactory pathways. Brain Res 409:205–214PubMedCrossRefGoogle Scholar
  10. Jacobs VL, Sis RF, Chenoweth PJ, Klemm WR, Smerry CJ, Coppock CE (1980) Tongue manipulation of the palate assists estrous detection in the bovine. Theriogenology 13:253–356CrossRefGoogle Scholar
  11. Keverne EB, Murphy CL, Silver WL, Wysocki CJ, Meredith M (1986) Non olfactory chemoreceptors in the nose: recent advances in understanding the vomeronasal and trigeminal systems. Chem Senses 11:119–133Google Scholar
  12. Klemm WR, Sherry CJ, Sis RF, Morris DL (1984) Electrographic recording from bivine vomeronasal capsule under spontaneous and simulated conditions. Brain Res 12:275–282Google Scholar
  13. Ladewig J, Hart BL (1980) Flehmen and vomeronasal organ function in male goats. Physiol Behav 24:1067–1071PubMedCrossRefGoogle Scholar
  14. Lerman JW, Beauchamp GK, Wysocki CJ, Kubie JL, (1979) Stimulus access and activation of the guinea pig vomeronasal system. Soc Neurosci Abstr 5:130Google Scholar
  15. Martin RD (1972) Adaptative radiation and behaviour in the malagasy lemurs. Philos Trans R Soc Lond B 264:295–352Google Scholar
  16. Melese-d'Hospital PY, Hart BL (1985) Vomeronasal organ cannulation in male goats: evidence for transport of luid from oral cavity to vomeronasa L. Physiol Behav 35:941–944PubMedCrossRefGoogle Scholar
  17. Meredith M (1979) Efferent control of stimulus access to the hamster vomeronasal organ. J Physiol 286:301–316PubMedGoogle Scholar
  18. Meredith M (1980) The vomeronasal organ and accessory olfactory systems in the hamster. In: Müller-Schwarze D, Silverstein RM (eds) Chemical signals in vertebrates and aquatic invertebrates. Plenum Press, New York, pp 303–326Google Scholar
  19. Meredith M (1983) Sensory physiology of pheromone communication. In: Vandenbergh JG (ed) Pheromones and reproduction in mammals. Academic Press, pp 199–252Google Scholar
  20. Meredith M (1987) Chronic electrophysiological recordings of vomeronasal pump activation in awake animals. Chem Senses 12:683Google Scholar
  21. Meredith M, O'Connell R (1988) HRP uptake by olfactory and vomeronasal receptor neurons: use as an indicator of incomplete lesion and relevance for non-volatile chemoreception. Chem Senses 13:487–515Google Scholar
  22. Mesulam M (1978) Tetramethyl benzidine for horseradish peroxidase neurochemistry: a non-cancinogenic blue reaction-product with superior sensitivity for visualizing neural afferents and efferents. J Histochem Cytochem 26:106–117PubMedGoogle Scholar
  23. O'Connell R, Meredith M (1984) Effects of volatile and non volatile chemical signals on male sex behaviors mediated by the main and accessory olfactory systems. Behav Neurosci 98:1083–1093PubMedCrossRefGoogle Scholar
  24. Petter-Rousseaux A (1970) Observations sur l'influence de la photopériode sur l'activité sexuelle chez le Microcebus murinus (Miller 1777) en captivité. Ann Biol Anim Biochem Biophys 10:203–208Google Scholar
  25. Schilling A (1970) L'organe de Jacobson du lemurien malgache Microcebus murinus (Miller 1777). Mem Mus Hist Nat Paris 61:203–280Google Scholar
  26. Schilling A (1980) The possible role of urine in territoriality of some nocturnal Prosimians. In: Stoddart DH (ed) Symp Soc Zool Lond. Academic Press, New York, pp 165–193Google Scholar
  27. Schilling A (1987) L'organe vomeronasal des Mammifères. J Psychol 81:221–278Google Scholar
  28. Serviere J, Webster WR, Calford MB (1984) Isofrequencies labeling revealed by a combined (14C) 2-deoxyglucose, electrophysiological and horseradish peroxidase study of the inferior colliculus of the cat. J Comp Neurol 228:463–477PubMedCrossRefGoogle Scholar
  29. Singer AG, Clancy AN, Macrides F, Agosta W (1984) Chemical studies of hamster vaginal discharge: male behavioral responses to a high molecular weight fraction require physical contacts. Physiol Behav 33:645–651PubMedCrossRefGoogle Scholar
  30. Stephan H, Baron G, Frahm H (1982) Comparison of brain structure volumes in insectivora and primates. II. Accessory olfactory bulb (AOB). J Hirnforsch 23:575–591PubMedGoogle Scholar
  31. Wysocki CJ, Wellington JL, Beauchamp GK (1980) Access of urinary non volatiles to the mammalian vomeronasal organ. Science 207:781–783PubMedGoogle Scholar
  32. Wysocki CJ, Beauchamp GK, Reidinger RR, Wellington JL (1985) Access of large and non volatile molecules to the vomeronasal organ of mammals during social and feeding behaviors. J Chem Ecol 11:1147–1160CrossRefGoogle Scholar
  33. Wysocki CJ, Bean NJ, Beauchamp GK (1986) The mammalian vomeronasal system: its role in learning and social behaviors. In: Duvall D, Müller-Schwarze D, Silverstein RM (eds) Chemical signals in vertebrates, Vol. 4. Publishing Corporation, pp 471–485Google Scholar
  34. Wysocki CJ, Meredith M (1987) The vomeronasal systandem. In: Finger TE (ed) Neurobiology of taste and smell. John Wiley & Sons, New York, pp 125–150Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • A. Schilling
    • 1
  • J. Serviere
    • 2
  • G. Gendrot
    • 2
  • M. Perret
    • 1
  1. 1.Laboratoire d'Ecologie GénéraleMNHMBrunoyFrance
  2. 2.Laboratoire de Physiologie SensorielleINRAJouy en JosasFrance

Personalised recommendations