Molecular and General Genetics MGG

, Volume 248, Issue 5, pp 599–609 | Cite as

Translational coupling and limited degradation of a polycistronic messenger modulate differential gene expression in theparD stability system of plasmid R1

  • Maria Jesús Ruiz-Echevarría
  • Guillermo de la Cueva
  • Ramón Díaz-Orejas
Original Paper


TheparD stability system of plasmid R1 is an auto-regulated operon containing two genes,kis andkid, that code, respectively, for a killer protein (Kid) and for an antagonist of Kid action (Kis protein). A polycistronic transcript and a shorter mRNA, coding only for Kis and ending in a stem-loop sequence, have been identified as the mainparD transcripts in cells carrying a derepressedparD operon. In this communication we show that bothparD mRNAs have a half-life close to 1 min and are present in similar amounts. Using an assay based on cell-free extracts ofEscherichia coli, we demonstrate that the shortkis mRNA originates from limited degradation of the bicistronicparD transcript and that the stem-loop structure within the 5′ end of thekid gene is specifically required for the formation of this short transcript. In vivo experiments show that synthesis of Kis is required for efficient synthesis of Kid. These data indicate that RNA processing and translational coupling are important mechanisms that modulate the differential expression of the two genes,kis andkid, in the bicistronicparD operon.

Key words

Post-transcriptional control In vitro mRNA degradation R1 plasmid parD stability system Programmed cell death 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adhin MR, van Duin J (1990) Scanning model for translationl reinitiation in Eubacteria. J Mol Biol 213:811–818PubMedGoogle Scholar
  2. Altuvia S, Locker-Giladi H, Koby S, Oppenheim A (1987) RNase III stimulates the translation of thecIII gene of bacteriophage λ. Proc Natl Acad Sci USA 84:6511–6515PubMedGoogle Scholar
  3. Baga M, Göransson M, Normark S, Uhlin BE (1988) Processed mRNA with differential stability in the regulation ofE. coli pilin gene expression. Cell 52:197–206CrossRefPubMedGoogle Scholar
  4. Belasco JG, Higgins CF (1988) Mechanisms of mRNA decay in bacteria: a perspective. Gene 72:15–23CrossRefPubMedGoogle Scholar
  5. Belasco JG, Adams CW, von Gabain A, Cohen SN (1985) Differential expression of photosynthetic genes inR. capsulata results from segmental differences in stability within the polycistronicrxcA transcript. Cell 40:171–178CrossRefPubMedGoogle Scholar
  6. Bravo A, de Torrontegui G, Díaz R (1987) Identification of components of a new stability system of plasmid R1,parD, that is close to the origin of replication of this plasmid. Mol Gen Genet 210:101–110CrossRefPubMedGoogle Scholar
  7. Bravo A, Ortega S, de Torrontegui G, Gíaz R (1988) Kflling ofEscherichia coli cells modulated by components of the stability systemparD of plasmid R1. Mol Gen Genet 215:146–151CrossRefPubMedGoogle Scholar
  8. Cannistraro VJ, Subbarao MN, Kennell D (1986) Specific endonucleolytic cleavage sites for decay ofEscherichia coli mRNA. J Mol Biol 192:257–274CrossRefPubMedGoogle Scholar
  9. Chang ACY, Cohen SN (1978) Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the p15A cryptic miniplasmid. J Bacteriol 134:1141–1156PubMedGoogle Scholar
  10. Chen CYA, Beatty JT, Cohen SN, Belasco JG (1988) An intercistronic stem-loop structure functions as an mRNA decay terminator necessary but insufficient forpuf mRNA stability. Cell 52:609–619CrossRefPubMedGoogle Scholar
  11. Díaz R, Nordström K, Staudenbauer WL (1981) Plasmid R1 DNA replication depends on protein synthesis in cell free extracts ofEscherichia coli. Nature 289:326–328CrossRefPubMedGoogle Scholar
  12. Donachie WD, Begg KJ, Vicente M (1976) Cell length, cell growth and cell division. Nature 264:328–333CrossRefPubMedGoogle Scholar
  13. Faubladier M, Kaymeuang C, Bouché JP (1990)Escherichia coli cell division inhibitor DicF-RNA of thedicB operon. Evidence for its generationin vivo by transcription termination and by RNase III and RNase E-dependent processing. J Mol Biol 212:461–471CrossRefPubMedGoogle Scholar
  14. García de Viedma D, Giraldo R, Ruíz-Echevarría MJ, Lurz R, Díaz-Orejas R (1995) Translation ofrepA, the gene of the initiation protein of thePseudomonas plasmid pPS10 is autoregulated by interactions of the RepA protein at a symmetrical operator. J Mol Biol 247:211–223CrossRefPubMedGoogle Scholar
  15. Gold L (1988) Post-transcriptional regulatory mechanisms inEscherichia coli. Ann Rev Biochem 57:199–233CrossRefPubMedGoogle Scholar
  16. Goliger JA, Yang X, Guo HC, Roberts JW (1989) Early transcribed sequences affect efficiency ofEscherichia coli RNA polymerase. J Mol Biol 205:331–341CrossRefPubMedGoogle Scholar
  17. Inouye M (1988) Antisense RNA: its functions and applications in gene regulation, a review. Gene 72:25–34CrossRefPubMedGoogle Scholar
  18. Ivey-Hoyle M, Steege DA (1989) Translation of phage f1 gene VII occurs from an inherently defective initiation site made functional by coupling. J Mol Biol 208:233–244CrossRefPubMedGoogle Scholar
  19. Jacobson AB, Good L, Simonetti J, Zucker M (1984) Some simple computational methods to improve the folding of large RNAs. Nucleic Acid Res 12:45–52PubMedGoogle Scholar
  20. King TC, Sirdeskmukh R, Schlessinger D (1986) Nucleolytic processing of ribonucleic acid transcripts in prokaryotes. Microbiol Rev 50:428–451PubMedGoogle Scholar
  21. Klug G, Cohen SN (1990) Combined action of multiple hairpin loop structures and sites of rate limiting endonucleolytic cleavage determines differential degradation rates of individual segments within polycistronicpuf operon mRNA. J Bacteriol 172:5140–5146PubMedGoogle Scholar
  22. Klug G, Adams CW, Belasco J, Doerge B, Cohen SN (1987) Biological consequences of segmental alterations in mRNA stability: effects of deletion of the intercistronic hairpin loop region of theR. capsulatus puf operon. EMBO J 6:3515–3520PubMedGoogle Scholar
  23. Lennox ES (1955) Transduction of linked genetic characters of the host by bacteriophage P1. Virology 1:190–206CrossRefPubMedGoogle Scholar
  24. Little S, Hyde S, Campbell CJ, Lilley RJ, Robinson MK (1989) Translational coupling in thethreonine operon ofEscherichia coli K12. J Bacteriol 171:3518–3522PubMedGoogle Scholar
  25. McCarthy JEG, Gualerzi C (1990) Translational control of prokaryotic gene expression. Trends Genet 6:78–85CrossRefPubMedGoogle Scholar
  26. McCarthy JEG, Gerstel B, Surin B, Wiedemann U, Ziemke P (1991) Differential gene expression from theEscherichia coli atp operon mediated by segmental differences en mRNA stability. Mol Microbiol 5:2447–2458PubMedGoogle Scholar
  27. Miller JH (1972) Assay for β-Galactosidase. Experiments in molecular genetics. Cold Spring Harbour Laboratory press. New York, pp 352–362Google Scholar
  28. Moine H, Romby P, Springer M, Grunberg-Manago M, Ebel JP, Ehresmann C, Ehresmann B (1988) Messenger RNA structure and gene regulation at the translational level inEscherichia coli: the case of threonine: tRNAThr ligase. Proc Natl Acad Sci USA 85:7892–7896PubMedGoogle Scholar
  29. Molin S, Stougard P, Uhlin BE, Gustafsson P, Nordström K (1979) Clustering of genes involved in replication, incompatibility and stable maintenance of the resistance plasmid R1. J Bacteriol 138:70–79PubMedGoogle Scholar
  30. Mott JE, Galloway JL, Platt T (1985) Maturation ofEscherichia coli tryptophan operon mRNA: evidence for 3′ exonucleolytic processing after rho-dependent termination. EMBO J 4:1887–1891PubMedGoogle Scholar
  31. Newbury SF, Smith NH, Higgins CF (1987a) Differential mRNA stability controls relative gene expression within a polycistronic operon. Cell 51:1131–1143CrossRefPubMedGoogle Scholar
  32. Newbury SF, Smith NH, Robinson EC, Hiles ID, Higgins CF (1987b) Stabilization of translationally active mRNA by prokaryotic REP sequences. Cell 48:297–310CrossRefPubMedGoogle Scholar
  33. Nieto C, Giraldo R, Fernandez-Tresguerres E, Díaz R (1992) Genetic and functional analysis of the basic replicon of pPS10, a plasmid specific forPseudomonas isolated fromPseudomonas syringae pathovarsavastanoi. J Mol Biol 223:415–426CrossRefPubMedGoogle Scholar
  34. Owolabi JB, Rosen BP (1990) Differential mRNA stability controls relative gene expression within the plasmid encoded arsenical resistance operon. J Bacteriol 172:2367–2371PubMedGoogle Scholar
  35. Petersen C (1989) Long-range translational coupling in therplJL-rpoBC operon ofEscherichia coli. J Mol Biol 206:323–332CrossRefPubMedGoogle Scholar
  36. Regnier P, Hajnsdorf E (1991) Decay of mRNA encoding ribosomal protein S15 ofEscherichia coli is initiated by an RNase E-dependent endonucleolytic cleavage that removes the 3′ stabilizing stem and loop structure. J Mol Biol 217:283–292CrossRefPubMedGoogle Scholar
  37. Rosenberg M, Court D (1979) Regulatory sequences involved in the promotion and termination of RNA transcription. Annu Rev Genet 13:319–353CrossRefPubMedGoogle Scholar
  38. Ruiz-Echevarría MJ, Berzal-Herranz A, Gerdes K, Díaz-Orejas R (1991) Thekis andkid genes of plasmid R1 form an operon that is autoregulated at the level of transcription by the coordinated action of the Kis and Kid proteins. Mol Microbiol 5:2685–2693PubMedGoogle Scholar
  39. Ruiz-Echevarría MJ, Giménez-Gallego G, Sabariegos-Jareño R, Díaz-Orejas R (1995) Kid, a small protein of theparD stability system of plasmid R1, is an inhibitor of DNA replication acting at the initiation of DNA synthesis. J Mol Biol 247:568–577CrossRefPubMedGoogle Scholar
  40. Salser W (1977) Globin mRNA sequences: analysis of base-pairing and evolutionary implications. Cold Spring Harbour Symp Quant Biol 42:985–1002Google Scholar
  41. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. A laboratory manual. (2nd edn) Cold Spring Harbour Laboratory, New YorkGoogle Scholar
  42. Schmidt BF, Berkhout B, Overbeek GP, Van Strien A, Van Duin J (1987) Determination of the RNA secondary structure that regulates lysis gene expression in bacteriophage MS2. J Mol Biol 195:505–516CrossRefPubMedGoogle Scholar
  43. Shapira SK, Chou J, Richaud FV, Casadaban MJ (1983) New versatile plasmid vectors for expression of hybrid proteins coded by a cloned gene fused tolacZ gene sequences encoding an enzymatically active carboxy-terminal portion of β-galactosidase. Gene 25:71–82CrossRefPubMedGoogle Scholar
  44. Simons RW (1988) Naturally occurring antisense RNA control. A brief review. Gene 72:35–43CrossRefPubMedGoogle Scholar
  45. Simons RW, Hiuman F, Kleckner N (1987) Improved single and multicopylac-based cloning vectors for protein and operon fusions. Gene 53:85–96CrossRefPubMedGoogle Scholar
  46. Simons RW, Kleckner N (1988) Biological regulation of antisense RNA in prokaryotes. Annu Rev Genet 22:567–600CrossRefPubMedGoogle Scholar
  47. Spanjaard RA, Van Dijk MCM, Turion AJ, Van Duin J (1989) Expression of the rat interferon-a1 gene inEscherichia coli controlled by secondary structure of the translational initiation region. Gene 80:345–351CrossRefPubMedGoogle Scholar
  48. Staudenbauer WL (1976) Replication of small plasmids in extracts ofEscherichia coli. Mol Gen Genet 145:172–180CrossRefGoogle Scholar
  49. Tang CK, Draper DE (1989) Unusual mRNA pseudoknot structure is recognized by a protein translational repressor. Cell 57:531–536CrossRefPubMedGoogle Scholar
  50. Telenitsky AP, Chamberlin MJ (1989) Sequences linked to prokaryotic promoters can affect the efficiency of downstream termination sites. J Mol Biol 205:315–330CrossRefGoogle Scholar
  51. Wulczyn FG, Khamann R (1991) Translational stimulation: RNA sequence and structure requirements for binding of Com protein. Cell 65:259–269CrossRefPubMedGoogle Scholar
  52. Zucker M, Stiegler P (1981) Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res 9:133–148Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Maria Jesús Ruiz-Echevarría
    • 1
  • Guillermo de la Cueva
    • 1
  • Ramón Díaz-Orejas
    • 1
  1. 1.Centro de Investigaciones Biológicas (CSIC)MadridSpain

Personalised recommendations