Advertisement

Nuova esposizione della geometria infinitesimale délle congruenze rettilinee

  • Gustavo Sannia
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. (*).
    Allgemeine Theorie der geradlinigen Strahlensysteme (Crelle's Journal, vol. 57, 1859).Google Scholar
  2. (*).
    Cfr. per es.,Zindler Liniengeometrie, 2er Bd.,Hensel (Crelle 102), ecc.Google Scholar
  3. (*).
    Cfr.Bianchi,Lezioni di Geometria Differenziale, 2.a ed., vol. I, § 42.Google Scholar
  4. (*).
    Bianchi, l. c., I, pag. 299.Google Scholar
  5. (*).
    Bianchi, l. c., I, § 39.Google Scholar
  6. (*).
    Bianchi, l. c., I, § 39.Google Scholar
  7. (*).
    Bianchi, l. c., I, § 72.Google Scholar
  8. (*).
    Cioè tale che sia\(\frac{\partial }{{\partial u}}\left( {\frac{F}{{E\Delta }}\begin{array}{*{20}c} \partial \\ \partial \\ \end{array} \frac{E}{\upsilon } - \frac{1}{\Delta }\frac{{\partial G}}{{\partial u}}} \right) + \frac{\partial }{{\partial \upsilon }}\left( {\frac{2}{\Delta }\begin{array}{*{20}c} \partial \\ \partial \\ \end{array} \frac{F}{u} - \frac{1}{\Delta }\frac{{\partial E}}{{\partial \upsilon }} - \frac{F}{{E\Delta }} \cdot \frac{{\partial E}}{{\partial u}}} \right) = 2\Delta .\) Cfr.Bianchi, l. c., I, § 43, formola (17).Google Scholar
  9. (**).
    Cfr.Bianchi, l. c., I, § 56.Google Scholar
  10. (*).
    Cfr.Bianchi, l. c., 1, § 38.Google Scholar
  11. (*).
    Bianchi, l. c., I, nota alla pag. 121.Google Scholar
  12. (*).
    Bianchi, l. c., I, pag. 93.Google Scholar
  13. (**).
    Bianchi, l. c., I, § 139.Google Scholar
  14. (*).
    Bianchi, l. c., I, § 54.Google Scholar
  15. (*).
    Bianchi, l. c., I, § 72.Google Scholar
  16. (*).
    Bianchi, l. c., I, § 43.Google Scholar

Copyright information

© Swets & Zeitlinger B.V. 1908

Authors and Affiliations

  • Gustavo Sannia
    • 1
  1. 1.Torino

Personalised recommendations