, Volume 7, Issue 3, pp 203–209 | Cite as

Investigation of the state of the electrochemically generated adsorbed O species on Au films interfaced with Y2O3-doped-ZrO2

  • D. Tsiplakides
  • S. G. Neophytides
  • C. G. Vayenas


Adsorbed O species on Au interfaced with Y2O3-doped-ZrO2 are generated by electrochemical O2− supply. It was found that two oxygen chemisorbed states are formed, which desorb at 420 °C (state α) and 550 °C (state β) with activation energies of desorption ranging between 115–145 kJ/mol and 235–270 kJ/mol, respectively. The strong interaction of the β-state O species with the Au surface causes an over 600 mV increase in Au surface potential and work function while the α-state O species is formed at even more positive catalyst-electrode potential. State α is attributed to normally adsorbed atomic O while the more ionic state β is only created electro-chemically and is mainly responsible for the work function increase of the Au catalyst-electrode surface. Their desorption activation energies of both states decrease linearly with increasing catalyst-electrode potential with slopes of the order of four.


Work Function Catalyst Film Desorption Activation Energy High Temperature Desorbing Surface Work Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7. References

  1. [1]
    M. Haruta, Catalysis Today,36, 153 (1997).CrossRefGoogle Scholar
  2. [2]
    T. Hayakawa, K. Sato, T. Tsunoda, K. Suzuki, M. Shimizu and K. Takehira, J. Chem. Soc., Chem. Commun. 1743 (1994).Google Scholar
  3. [3]
    O.A. Marina, V.A. Sobyanin and V.D. Belyaev, Catal. Today13, 567 (1992).CrossRefGoogle Scholar
  4. [4]
    C.G. Vayenas, M.M. Jaksic, S. Bebelis and S. Neophytides in: Modern Aspects of Electrochemistry (J.O' M. Bockris, B.E. Conway and R.E. White, Eds.), Number 29, p. 57 (1996).Google Scholar
  5. [5]
    D. Tsiplakides and C.G. Vayenas, J. Electrochem. Soc.148, 1 (2001).CrossRefGoogle Scholar
  6. [6]
    S.G. Neophytides, S. Zafeiratos and S. Kennou, Solid State Ionics136–137, 801–806 (2000).CrossRefGoogle Scholar
  7. [7]
    M.E. Schrader, J. Colloid Interface Sci.59, 456 (1977).CrossRefGoogle Scholar
  8. [8]
    M.E. Schrader, Surf. Sci.78, L227 (1978).Google Scholar
  9. [9]
    M.A. Chesters, and G.A. Somorjai, Surf. Sci.52, 21 (1975).CrossRefGoogle Scholar
  10. [10]
    P. Legare, L. Hilaire, M. Sotto, and G. Maire, Surf. Sci.91, 175 (1980).CrossRefGoogle Scholar
  11. [11]
    D.D. Eley, and P.B. Moore, Surf. Sci.76, L599 (1978).Google Scholar
  12. [12]
    N.D.S. Canning, D. Outka, and R.J. Madix, Surf. Sci.141, 240 (1984).CrossRefGoogle Scholar
  13. [13]
    J.J. Pireaux, M. Liehr, P.A. Thiry, J.P. Delrue, and R. Caudano, Surf. Sci.141, 221 (1984).CrossRefGoogle Scholar
  14. [14]
    J.W. Schultze, Electrochim. Acta17, 451 (1972).CrossRefGoogle Scholar
  15. [15]
    M.I. Florit, M.E. Martins, and A.J. Arvia, J. Electroanal. Chem.126, 255 (1981).Google Scholar
  16. [16]
    F. Chao, M. Costa, and A. Tadjeddine, Surf. Sci.46, 265 (1974).CrossRefGoogle Scholar
  17. [17]
    M.M. Jaksic, B. Johansen, and R. Tunold, International Journal of Hydrogen Energy18, 91 (1993).CrossRefGoogle Scholar
  18. [18]
    M. Peuckert, F.P. Coenen, and H.P. Bonzel, Surf. Sci.141, 515 (1984).CrossRefGoogle Scholar
  19. [19]
    R.R. Ford, and J. Pritchard, JCS Chemistry Commun. 362 (1968).Google Scholar
  20. [20]
    N.B. Bazhutin, G.K. Boreskov, and V.I. Savshenko, Reaction Kinetics Catalysis Letters10, 337 (1979).CrossRefGoogle Scholar
  21. [21]
    S. Evans, E.L. Avans, D.E. Parry, M.J. Tricker, M.J. Walters, and J.M. Thomas, Faraday Trans. Chem. Soc. 97 (1974).Google Scholar
  22. [22]
    J.J. Pireaux, M. Chtaib, J.P. Delrue, P.A. Thiry, M. Liehr, and R. Caudano, Surf. Sci.141, 211 (1984).CrossRefGoogle Scholar
  23. [23]
    M. Hecq, A. Hecq, and M. Liemans, J. Appl. Phys.49, 6176 (1978).CrossRefGoogle Scholar
  24. [24]
    A. Hecq, M. Vandy, and M. Hecq, J. Chem. Phys.72, 2876 (1980).CrossRefGoogle Scholar
  25. [25]
    N. Saliba, D.H. Parker, B.E. Koel, Surf. Sci.,410, 270 (1998).CrossRefGoogle Scholar
  26. [26]
    M.A. Lazaga, D.T. Wickham, D.H. Parker, G.N. Kastanas, and B.E. Koel, in: Catalytic Selective Oxidation (J.W. Hightower, and S.T. Oyama, Eds.), p. 90. ACS, Washington, DC, 1993.Google Scholar
  27. [27]
    D.H. Parker, and B.E. Koel, J. Vac. Sci. Technol.A8, 2585 (1990).Google Scholar
  28. [28]
    S. Ladas, S. Kennou, S. Bebelis and C.G. Vayenas, J. Phys. Chem.,97, 8845 (1993).CrossRefGoogle Scholar
  29. [29]
    S.G. Neophytides, D. Tsiplakides and C.G. Vayenas, J. Catal., 178, 414–428 (1998).CrossRefGoogle Scholar
  30. [30]
    J.L. Falconer and R.J. Madix Surf. Sci.48, 393 (1975).CrossRefGoogle Scholar
  31. [31]
    Y. Uchida, X. Bao, K. Weiss, R. Schlogl, Surf. Sci.401, 469 (1998).CrossRefGoogle Scholar
  32. [32]
    D. Tsiplakides and C. G. Vayenas, J. Catal.185, 237 (1999).CrossRefGoogle Scholar

Copyright information

© IfI - Institute for Ionics 2001

Authors and Affiliations

  • D. Tsiplakides
    • 1
  • S. G. Neophytides
    • 2
  • C. G. Vayenas
    • 1
  1. 1.Department of Chemical EngineeringUniversity of PatrasPatrasGreece
  2. 2.Institute of Chemical Engineering and High Temperature Chemical ProcessesPatrasGreece

Personalised recommendations