Landscape Ecology

, Volume 7, Issue 2, pp 87–99 | Cite as

Satellite remote sensing of breeding habitat for an African weaver-bird

  • David O. Wallin
  • Clive C. H. Elliott
  • Herman H. Shugart
  • Compton J. Tucker
  • Friedrich Wilhelmi
Article

Abstract

Data derived from the Advanced Very High Resolution Radiometer (AVHRR) on board the NOAA series of operational, polar orbiting, meteorological satellites have previously been shown to be quite useful for monitoring vegetation dynamics at scales ranging from regional (104 km2) to global. In this report, we demonstrate that these same data can be used to monitor potential breeding habitat for a highly mobile, granivorous African weaver-bird, the red-billed quelea (Quelea quelea). This species is often considered to be an agricultural pest, affecting cereal production throughout sub-Saharan Africa. The temporal resolution and very large (continental) spatial coverage provided by these data can provide a unique context within which to examine species distribution and abundance patterns.

Keywords

remote sensing AVHRR breeding habitat habitat suitability East Africa 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Addicott, J.F., Aho, J.M., Antolin, M.F., Padilla, D.K., Richardson, J.S. and Soluk, D.A. 1987. Ecological neighborhoods: scaling environmental patterns. Oikos 49: 340–346.Google Scholar
  2. Allen, T.F.H. and Starr, T.B. 1982. Hierarchy: Perspectives for ecological complexity. Univ. Chicago Press, Chicago.Google Scholar
  3. Allen, T.F.H., O'Neill, R.V. and Hoekstra, T.W. 1984. Inter-level relations in ecological research and management: some working principles from hierarchy theory. USDA Forest Service General Technical Report RM-10, 11 pp. Rocky Mt. For. and Range Exp. Station, Ft. Collins, Colo.Google Scholar
  4. Bruggers, R.L., Jaeger, M.M. and Bourassa, J.B. 1983. The application of radiotelemetry for locating and controlling concentrations of red-billed quelea in Africa. Tropical Pest Management 29: 27–32.Google Scholar
  5. Bruggers, R.L. and Elliott, C.C.H. (editors) 1989.Quelea quelea, Africa's Bird Pest. Oxford Univ. Press, New York.Google Scholar
  6. Craighead, J.J., Sumner, J.S. and Scaggs, G.B. 1982. A definitive system for analysis of grizzly bear habitat and other wilderness resources using LANDSAT multispectral imagery and computer technology. Wildlife-Wildlands Institute Monograph No. 1; U of M Foundation, U of Montana; Missoula, Montana, 279 pp.Google Scholar
  7. Craighead, J.J., Craighead, F.L., Craighead, D.J. and Redmond, R.L. 1988. Mapping arctic vegetation in northwest Alaska using Landsat MSS imagery. National Geographic Research 4: 496–527.Google Scholar
  8. Curran, P.J. 1980. Multispectral photographic remote sensing of vegetation amount and productivity.In Proceedings of the 14th International Symposium on Remote Sensing of the Environment. pp. 623–637. Ann Arbor, Mich.Google Scholar
  9. Curran, P.J. 1983. Multispectral remote sensing for the estimation of green leaf area index. Phil. Trans. R. Soc. A 309: 257Google Scholar
  10. D'Arrigo, R., Jacoby, G.C. and Fung, I.Y. 1987. Boreal forest and atmosphere-biosphere exchange of carbon dioxide. Nature. 329: 321–323.CrossRefGoogle Scholar
  11. Elliott, C.C.H. 1979. The harvest time method as a means of avoiding quelea damage to irrigated rice in Chad/Cameroun. J. Appl. Ecol. 16: 23–35.Google Scholar
  12. Elliott, C.C.H. 1989. The pest status of the quelea. InQuelea quelea, Africa's Bird Pest. pp. 17–34. Edited by R.L. Bruggers and C.C.H. Elliott. Oxford Univ. Press, New York.Google Scholar
  13. Elliott, C.C.H. 1990. The migrations of the Red-billed QueleaQuelea quelea and their relation to crop damage. Ibis 132: 232–237.Google Scholar
  14. Flohn, H. 1987. Rainfall teleconnections in northern and northeastern Africa. Theor. Appl. Climatol. 38: 191–197.CrossRefGoogle Scholar
  15. Forman, R.T.T. and Goddron, M. 1986. Landscape Ecology. Wiley, New York.Google Scholar
  16. Gates, D.M., Keegan, H.J., Schleter, J.C. and Weider, V.R. 1965. Spectral properties of plants. Appl. Opt. 4.Google Scholar
  17. Gilmer, D.S., Work, E.A. Jr., Colwell, J.E. and Rebel, D.L. 1980. Enumeration of prairie wetlands with LANDSAT and aircraft data. Photogram. Eng. and Remote Sensing 46: 631–634.Google Scholar
  18. Goward, S.N., Tucker, C.J. and Dye, D.G. 1985. North American vegetation patterns observed with the NOAA-7 advanced very high resolution radiometer. Vegetatio 64: 3–14.CrossRefGoogle Scholar
  19. Hielkema, J.U., Roffey, J. and Tucker, C.J. 1986. Assessment of ecological conditions associated with the 1980/81 desert locust plague upsurge in West Africa using environmental satellite data. Int. J. Remote Sensing 7: 1609–1622.Google Scholar
  20. Holben, B.N. 1986. Characteristics of maximum-value composite images from temporal AVHRR data. Int. J. Remote Sensing 7: 1417–1434.Google Scholar
  21. Jackson, R.D. 1983. Spectral indices in n-space. Remote Sensing of Environment 13: 409–421.CrossRefGoogle Scholar
  22. Jaeger, M.M., Bruggers, R.L., Johns, B.E. and Erickson, W.A. 1986. Evidence of itinerant breeding of the red-billed quelea,Quelea quelea, in the Ethiopian Rift Valley. Ibis 128: 469–482.Google Scholar
  23. Jones, P.J. and Ward, P. 1976. The level of reserve protein as the proximate factor controlling the timing of breeding and clutch-size in the red-billed queleaQuelea quelea. Ibis 118: 547–574.CrossRefGoogle Scholar
  24. Jones, P.J. and Ward, P. 1979. A physiological basis for colony desertion by the red-billed quelea (Quelea quelea). J. Zool. 189: 1–19.CrossRefGoogle Scholar
  25. Justice, C.O., Holben, B.N. and Gwynne, M.D. 1986. Monitoring East African vegetation using AVHRR data. Int. J. Remote Sensing 7: 1453–1474.Google Scholar
  26. Justice, C.O., Townshend, J.R.G., Holben, B.N. and Tucker, C.J. 1985. Analysis of the phenology of global vegetation using meteorological satellite data. Int. J. Remote Sensing 6: 1271–1318.Google Scholar
  27. Kalensky, Z. and Wilson, D.A. 1975. Spectral signatures of forest trees.In Proceedings: Third Canadian Symposium on Remote Sensing. pp. 155–171.Google Scholar
  28. Kareiva, P. and Anderson, M. 1988. Spatial aspects of species interactions: the wedding of models and experiments.In Community Ecology. pp. 35–50. Edited by A. Hastings. Springer-Verlag, New York.Google Scholar
  29. Kaufman, Y.J. 1987. The effect of subpixel clouds on remote sensing. Int. J. Remote Sensing 8: 839–857.Google Scholar
  30. Kaufman, Y.J. and Holben, B.N. (in press). Calibration of the AVHRR visible and near-IR bands by atmospheric scattering, ocean glint and desert reflection. J. Appl. Met.Google Scholar
  31. Kidwell, K.B. 1984. NOAA polar orbital data users guide. (Tiros-N, NOAA 6, 7, 8). NOAA National Climate Center, Washington, D.C.Google Scholar
  32. Knipling, E.B. 1970. Physical and physiological basis for the reflectance of visible and near-infrared radiation from vegetation. Remote Sensing of Environment 1: 155–159.CrossRefGoogle Scholar
  33. Kumar, M. and Monteith, J.L. 1982. Remote sensing of crop growth,In Plants and the Daylight Spectrum. pp. 134 Edited by H. Smith. Academic Press, London.Google Scholar
  34. Levin, S.A. 1976. Population dynamic models in heterogeneous environments. Ann. Rev. Ecol. Syst. 7: 287–310.CrossRefGoogle Scholar
  35. Linthicum, K.J., Bailey, C.L., Davies, F.G. and Tucker, C.J. 1987. Detection of Rift Valley fever viral activity in Kenya by satellite remote sensing imagery. Science 235: 1656–1659.PubMedGoogle Scholar
  36. MacDonald, R.B. 1984. A summary of the history of the development of automated remote sensing for agricultural applications. IEEE Trans. Geosci. Remote Sens. GE-22: 473–480.Google Scholar
  37. Malingreau, J.-P. 1986. Global vegetation dynamics: satellite observations over Asia. Int. J. Remote Sensing 7: 1121–1146.Google Scholar
  38. McIntosh, R.P. 1985. The background of ecology. Cambridge University Press, Cambridge.Google Scholar
  39. Nieuwolt, S. 1986. Agricultural drought in the tropics. Theor. Appl. Climatol. 37: 29–38.CrossRefGoogle Scholar
  40. O'Brien, R.G. and Kaiser, M.K. 1985. MANOVA method for analyzing repeated measures designs: an extensive primer. Psychological Bulletin 97: 316–333.CrossRefPubMedGoogle Scholar
  41. O'Neill, R.V., DeAngelis, D.L., Waide, J.B. and Allen, T.F.H. 1986. A hierarchical concept of ecosystems. Princeton Univ. Press, Princeton.Google Scholar
  42. Saxon, E.C. 1983. Mapping the habitats of rare animals in the Tanami Wildlife Sanctuary (central Australia): an application of satellite imagery. Biological Conservation 27: 243–257.CrossRefGoogle Scholar
  43. Sellers, P.J. 1985. Canopy reflectance, photosynthesis and transpiration. Int. J. Remote Sensing 6: 1335–1372.Google Scholar
  44. Sellers, P.J. 1987. Canopy reflectance, photosynthesis and transpiration II. Remote Sensing of Environment. 21: 143–183.CrossRefGoogle Scholar
  45. Sokal, R.R. and Rohlf, F.J. 1981. Biometry. Second Edition, W.H. Freeman and Co., New York.Google Scholar
  46. Southwood, T.R.E. 1977. Habitat, the template for ecological strategies? J. Amin. Ecol. 46: 337–365.Google Scholar
  47. Tabachnick, B.L. and Fidell, L.S. 1989. Using multivariate statistics. Second Edition, Harper and Row, New York.Google Scholar
  48. Thompson, J.J. 1988. The post-nuptial moult ofQuelea quelea in relation to breeding in Kenya. J. Tropical Ecol. 4: 373–380.CrossRefGoogle Scholar
  49. Tucker, C.J. 1978. A comparison of satellite sensor bands for vegetation monitoring. Photogram. Eng. and Remote Sensing 44: 1369–1380.Google Scholar
  50. Tucker, C.J., Holben, B.N., Elgin, J.H. Jr. and McMurtrey III, J.E. 1980. Relationship of spectral data to grain yield variation. Photogram. Eng. and Remote Sensing 46: 657–666.Google Scholar
  51. Tucker, C.J., Holben, B.N., Elgin, J.H. Jr. and McMurtrey III, J.E. 1981. Remote sensing of total dry-matter accumulation in winter wheat. Remote Sensing of Environment. 11: 171–189.CrossRefGoogle Scholar
  52. Tucker, J.C., Townshend, J.R.G. and Goff, T.E. 1985a. African land-cover classification using satellite data. Science 227: 369–375.PubMedGoogle Scholar
  53. Tucker, C.J., Hielkema, J.U. and Roffey, J. 1985b. The potential of satellite remote sensing of ecological conditions for survey and forecasting desert-locust activity. Int. J. Remote Sensing 6: 127–138.Google Scholar
  54. Tucker, C.J., Fung, I.Y., Keeling, C.D. and Gammon, R.H. 1986. Relationship between atmospheric CO2 variations and a satellite-derived vegetation index. Nature 319: 195–199.CrossRefGoogle Scholar
  55. Tucker, C.J. and Sellers, P.J. 1986. Satellite remote sensing of primary production. Int. J. Remote Sensing 7: 1395–1416.Google Scholar
  56. Turner, M.G. 1987. Landscape heterogeneity and disturbance. Ecological Studies, Volume 64. Springer-Verlag, New York.Google Scholar
  57. Urban, D.L., Shugart, H.H. Jr., DeAngelis, D.L. and O'Neill, R.V. 1987a. Forest bird demography in a landscape mosaic. Oak Ridge National Lab, TM-10332.Google Scholar
  58. Urban, D.L., O'Neill, R.V. and Shugart, H.H. Jr., 1987b. Landscape Ecology: a hierarchical perspective can help scientists understand spatial patterns. Bioscience 37: 119–127.CrossRefGoogle Scholar
  59. Voss, F. 1986.ATLAS: Quelea habitats in East Africa. Food and Agriculture Organization, Rome.Google Scholar
  60. Wallin, D.O. 1990. Habitat dynamics for an African weaver-bird: the red-billed quelea (Quelea quelea). Ph. D. dissertation, Department of Environmental Sciences, University of Virginia, Charlottesville, Virginia; 174 pp.Google Scholar
  61. Ward, P. 1965a. Feeding ecology of the black-faced diochQuelea quelea in Nigeria. Ibis 107: 173–214.Google Scholar
  62. Ward, P. 1965b. The breeding biology of the black-faced diochQuelea quelea in Nigeria. Ibis 107: 326–349.Google Scholar
  63. Ward, P. 1965c. Seasonal changes in the sex ratio ofQuelea quelea (Ploceidae). Ibis 107: 397–399.Google Scholar
  64. Ward, P. 1971. The migration patterns ofQuelea quelea in Africa. Ibis 113: 275–297.Google Scholar
  65. Ward, P. 1973. Manual of techniques used in research on quelea birds. APG: RAF 67 087 UNDP FAO, Rome.Google Scholar
  66. Ward, P. 1979. Rational strategies for the control of queleas and other migrant bird pests in Africa. Phil. Trans. R. Soc. London B. 287: 289–300.Google Scholar
  67. Ward, P. and Jones, P.J. 1977. Pre-migratory fattening in three races of the red-billed queleaQuelea quelea (Aves: Ploceidae), an intra-tropical migrant. J. Zool. 181: 43–56.CrossRefGoogle Scholar
  68. Wiens, J.A. and Dyer, M.I. 1977. Assessing the potential impact of granivorous birds in ecosystems.In Granivorous Birds in Ecosystems. pp. 205–266. Edited by J. Pinowski and S.C. Kendeigh. Cambridge Univ. Press, Cambridge 1977.Google Scholar
  69. Wooley, J.I. 1971. Reflectance and transmittance of light by leaves. Plant Physiol. 47: 656–662.CrossRefGoogle Scholar

Copyright information

© SPB Academic Publishing bv 1992

Authors and Affiliations

  • David O. Wallin
    • 1
  • Clive C. H. Elliott
    • 3
  • Herman H. Shugart
    • 1
  • Compton J. Tucker
    • 4
  • Friedrich Wilhelmi
    • 5
  1. 1.Department of Environmental Sciences, Clark HallUniversity of VirginiaCharlottesvilleUSA
  2. 2.Department of Forest ScienceOregon State UniversityCorvallisUSA
  3. 3.Food and Agriculture Organization of the United NationsAGOERomeItaly
  4. 4.Laboratory for Terrestrial Physics, Code 923National Aeronautics and Space Administration Goddard Space Flight CenterGreenbeltUSA
  5. 5.KaiserslauternWest Germany

Personalised recommendations