Advertisement

Applications of Nagumo-Hukuhara theory on the boundary value problems for nonlinear ordinary differential equations to abrikosov problem and Falkner-Skan problem

  • 33 Accesses

  • 1 Citations

Summary

This paper studies the two boundary value problems (A) and (B) as applications of Nagumo-Hukuhara theory on the boundary value problems for the second order nonlinear ordinary differential equations.

References

  1. [1]

    A. A. Abrikosov,On the magnetic properties of superconductors of the second group, Soviet Phys. JEPT,5 (1957), pp. 1174–1182.

  2. [2]

    K. Ako,Subfunctions for ordinary differential equations, J. Fac. Sci. Univ. Tokyo, Sec. I,9 (1965), pp. 17–43.

  3. [3]

    K. Ako,Subfunctions for ordinary differential equations - II, Funckcialaj Ekvacioj,10 (1967), pp. 145–162.

  4. [4]

    V. M. Falkner -S. W. Skan,Some approximate solutions of the boundary-layer equations, Phil. Mag.,12 (1931), pp. 865–896, ARC RM,1314 (1930).

  5. [5]

    P. Hartman,Ordinary differential equations, John Wiley and Sons Inc., New York, 1964.

  6. [6]

    D. R. Hartree,On an equation occuring in Falkner and Skan's approximate treatment of the equations of the boundary layer, Proc. Camb. Phil. Soc.,33, part. II (1937), pp. 223–239.

  7. [7]

    S. P. Hastings,An existence theorem for a class of nonlinear boundary value problems including that of Falkner and Skan, Jour. Diff. Eq.,9 (1971), pp. 580–590.

  8. [8]

    M. Hukuhara,Familles knéseriennes et le problème aux limités pour l'équation différentielle ordinaire du second ordre -I, Publ. RIMS, Kyoto Univ., Ser. A,3 (1967), pp. 243–270.

  9. [9]

    M. Hukuhara,Familles knéseirennes et le problème aux limités pour l'équation différentielle ordinaire du second ordre - II, Ibid.,4 (1968), pp. 131–147.

  10. [10]

    M. Hukuhara,Theory of H. Kneser and topological treatment for boundary value problems (in Japanese), Sugaku,21, n. 3 (1969), pp. 178–188.

  11. [11]

    M. Iwano,Analytic expressions for counded solutions of nonlinear ordinary differential equations with an irregular type singular point, Ann. Mat. Pura Appl., serie 4,82 (1969), pp. 189–256.

  12. [12]

    M. Iwano,Bounded solutions and stable domains of nonlinear ordinary differential equations, Analytic Theory of Differential Equations, Lecture Notes in Math., Springer-Verlag, Berlin,183 (1971), pp. 59–127.

  13. [13]

    M. Iwano,The boundary layer equation f‴+2ff′+2λ(1−f′ 2 )=0, λ<0, Boll. U.M.I. (4)11, Suppl. fasc. 3 (1975), pp. 329–343.

  14. [14]

    M. Iwano,The boundary layer equation f‴+2ff′+2λ(1−f′ 2 )=0, λ<0, f(0)=0, f′(0)=0, f′(+∞)=1 (in Japanese), Kansu Hoteisiki,27 (1976), pp. 1–56.

  15. [15]

    L. K. Jackson,Subfunctions and second-order differential inequalities, Advanced in Math.,2 (1968), pp. 307–363.

  16. [16]

    Y. Kametaka,On a nonlinear Bessel equation, Publ. RIMS, Kyoto Univ.,8 (1972), pp. 151–200.

  17. [17]

    F. Kemnitz - R. Iglisch,Ueber die in der Grenzschichtheorie auftretende Differentialgleichung f‴+ff″+β(1−f′ 2 )=0 für β<0 bei gewissen Ausauge-und Ausblasegezetzen, 50 Jahre Grenzschichtforschung, Braunschweig (1955).

  18. [18]

    N. Kikuchi -K. Hayashi -T. Kaminogo,The boundary layer equation x‴+2xx″++2λ(1−x′ 2)=0 for λ>−0.19880, Fac. Eng. Keio Univ. Yokohama,28, n. 9 (1975), pp. 87–97.

  19. [19]

    H. Knobloch,Comparison theorems for nonlinear second order differential equations, Jour. Diff. Eqs.,1 (1965), pp. 1–26.

  20. [20]

    M. Nagumo,Über die Differentialgleichung y″=f(x, y, y′), Proc. Phys.-Math. Soc. Japan,19 (1937), pp. 861–866.

  21. [21]

    M. Nagumo,Boundary value problems for second order ordinary differential equations - I, II (in Japanese), Kansû Hôteisiki,5 (1939), pp. 27–34;6 (1939), pp. 37–44.

  22. [22]

    M. Nagumo,Degree of Mapping and Existence Theorems (in Japanese), Kwade, Tokyo, 1948.

  23. [23]

    H. Okamura,On y″=f(x, y, y′)-I, II, III (in Japanese), Kansû Hôteisiki,27 (1941), pp. 27–35;30 (1941), pp. 14–19;31 (1942), pp. 32–40.

  24. [24]

    O. Perron,Eine neuer Existenzbeweis für die Integrale der Differentialgleichung y′=f(x, y), Math. Ann.,76 (1915), pp. 471–484.

  25. [25]

    O. Perron,Eine neue Behandlung der ersten Randwet-aufgabe für Δu=0, Math. Z.,18 (1923), pp. 42–54.

  26. [26]

    H. Schlichting,Boundary-Layer Theory, McGraw-Hill Book Company, New York, 1968.

  27. [27]

    K. Stewarson,Further solutions of the Falkner-Skan equation, Proc. Camb. Phil. Soc.,50 (1954), pp. 454–465.

  28. [28]

    H. Weyl,On the differential equations of the simplest boundary-layer problems, Ann. Math.,43 (1942), pp. 381–407.

Download references

Author information

Additional information

Dedicated to Profs.Masuo Hukuhara andMitio Nagumo on their Seventieth Birthdays

Entrata in Redazione il 4 giugno 1976.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Iwano, M. Applications of Nagumo-Hukuhara theory on the boundary value problems for nonlinear ordinary differential equations to abrikosov problem and Falkner-Skan problem. Annali di Matematica 113, 303–392 (1977) doi:10.1007/BF02418379

Download citation

Keywords

  • Differential Equation
  • Ordinary Differential Equation
  • Nonlinear Ordinary Differential Equation
  • Order Nonlinear Ordinary Differential Equation