Advertisement

Annali di Matematica Pura ed Applicata

, Volume 113, Issue 1, pp 173–197 | Cite as

Etude de quelques problèmes d'existence globale concernant l'équation\(\frac{{\partial ^{r + s} u}}{{\partial x^r \partial y^s }} = f\left( {x,y,u,\frac{{\partial u}}{{\partial x}},\frac{{\partial u}}{{\partial y}},...,\frac{{\partial ^{p + q} u}}{{\partial x^p \partial y^q }},...} \right)\left\{ \begin{gathered} 0 \leqslant p \leqslant r \hfill \\ 0 \leqslant q \leqslant s \hfill \\ p + q< r + s \hfill \\ \end{gathered} \right.\)

  • Gérard Hecquet
Article

Bibliographie

  1. [1]
    Some remarks on the existence and uniqueness of solutions of the hyperbolic equation z xy =f(x, y, z, x x,z y), Studia Math.,15 (1956), pp. 201–215.MathSciNetzbMATHGoogle Scholar
  2. [1a][1]
    An application of Tychonoff's fixed point theorem to hyperbolic partial differential equations, Math. Ann.,162 (1965–66), pp. 77–82.CrossRefMathSciNetzbMATHGoogle Scholar
  3. [1]
    Une remarque sur l'application de la méthode de Banach-Caccioppoli-Tikhonoff dans la théorie de l'équation s=f(x, y, z, p, q), Bull. Acad. Polon. Sci., Classe III,4 (1956), pp. 265–268.zbMATHMathSciNetGoogle Scholar
  4. [1]
    Il problema da Darboux per una equazione di tipo iperbolico in due variabili, Ric. Math.,4 (1959), pp. 15–29.MathSciNetGoogle Scholar
  5. [2]
    Sul problema di Darboux per l'equazione s=f(x, y, z, p, q), Rend. Acad. Sci. Fis. Mat. Soc. Naz. Sci. Napoli (4),22 (1956), pp. 221–225.MathSciNetGoogle Scholar
  6. [1]
    Cinquini-Cibrario M. - Cinquini S. Equazioni a derivate parziali di tipo iperbolico, Consiglio Nazionale delle Ricerche, Monografie Matematiche, vol. 12, Edizioni Cremonese, Roma 1965.Google Scholar
  7. [1]
    An existence theorem for the equation u xyz =f, Arch. Rational Mech. Anal.,9 (1962), pp. 64–76.CrossRefzbMATHMathSciNetGoogle Scholar
  8. [1]
    Existence of solutions of an n-th order hyperbolic partial differential equation, Contrib. Diff. Equations,2 (1963), pp. 277–289.Google Scholar
  9. [1]
    Sul problema di Darboux per l'equazione z xy =f(x, y, z, z x,z y), Ann. Univ. Ferrara, Sez. VII,2 (1953), pp. 129–140.zbMATHMathSciNetGoogle Scholar
  10. [1]
    Su un problema al contorno per una equazione di tipo iperbolico di ordine 2m, Ric. Mat.,16 (1967), pp. 264–302.zbMATHGoogle Scholar
  11. [1]
    On an analogue of the Euler-Cauchy polygon method for the numerical solution of u xy = =f(x, y, u, u x,u y), Arch. Rational Mech. Anal.,1 (1958), pp. 357–390.zbMATHMathSciNetCrossRefGoogle Scholar
  12. [1]
    Niektore vlastnosti picardovych postupnosti a ich pouzitie pre hyperbolické rovnice, Acta F.R.N. Univ. Comen. Mathematica,19 (1968), pp. 47–73.zbMATHMathSciNetGoogle Scholar
  13. [2]
    The convergence of successive approximations for boundary value problems of hyperbolic equations in the banach space, Matematicky casopis,21 (1971), n. 1, pp. 33–54.zbMATHMathSciNetGoogle Scholar
  14. [1]
    Su un problema di limiti per l'equazione u xyz =f(x, y, z, u, u x,u y,u z), Matematiche (Catania),21 (1966), pp. 396–412.zbMATHMathSciNetGoogle Scholar
  15. [1]
    On an analog of the Euler-Cauchy polygon method for the partial differential equation \(u_{x_1 ,...,x_r }\), Contrib. Diff. Equations,2 (1963), pp. 1–59.zbMATHMathSciNetGoogle Scholar
  16. [1]
    On hyperbolic partial differential equations, Amer. J. Math.,74 (1952), pp. 834–864.MathSciNetzbMATHGoogle Scholar
  17. [1]
    Sur l'existence et l'unicité des solutions des problèmes classiques relatifs à l'équation s=F(x, y, z, p, q), Ann. Univ. Mariae Curie - Sklodowska, Lublin-Polonia, Sect. A,11 (1957), pp. 73–112.MathSciNetGoogle Scholar
  18. [2]
    Sur l'unicité de certains problèmes pour l'équation z xy =f(x, y, z, z x,z y), Ann. Univ. Maria Curie - Sklodowska, Lublin-Polonia, Sect. A,12 (1958), pp. 111–125.MathSciNetGoogle Scholar
  19. [3]
    Sur le problème de Picard pour l'équation hyperbolique aux dérivées partielles du second ordre, Ann. U.M.C.S., Sect. A,13 (1959), pp. 5–22.MathSciNetGoogle Scholar
  20. [4]
    Remarque sur l'existence des solutions en large de l'équation z xy =f(x, y, z, z x,z y), Ann. U.M.C.S., Sect. A,13 (1959), pp. 25–32.MathSciNetGoogle Scholar
  21. [5]
    Solutions généralisées du problème de Cauchy-Darboux pour l'équation z xy =f(x, y, z, z x,z y), Ann. U.M.C.S.,14 (1960), pp. 87–108.zbMATHMathSciNetGoogle Scholar
  22. [1]
    Sur la convergence des approximations successives pour l'équation z y =f(x, y, z, z x,z y), Ann. U.M.C.S.,16 (1962), pp. 107–120.MathSciNetzbMATHGoogle Scholar
  23. [1]
    Existence and uniqueness of solutions of the Darboux problem for the equation z xy =f(x,y,z,x x ,z y, Ann. Pol. Math.,13 (1963), pp. 267–277.zbMATHMathSciNetGoogle Scholar
  24. [2]
    Palczewski B. On boundedness and stability of solution of Darboux problem for abstract equations of hyperbolic type in an unbounded domain, Zeszyty naukowe Politechniki gdauskiej, n. 150 (1969), pp. 19–51.Google Scholar
  25. [1]
    On the existence and uniqueness of solutions of the Darboux problem for the equation z xy =f(x, y, z, z x,z y), Bull. Acad. Polon. Sci. Ser. Math. Astron. Phys.,12 (1964), pp. 703–707.zbMATHMathSciNetGoogle Scholar
  26. [1]
    Die Lösung der partiellen differentialgleichung u xxtt =A(t, x)u xx +B(t, x) tt mit gewissen nebenbedingungen, Casopis pro pestovani matematiky roc,98 (1973), pp. 388–397.MathSciNetGoogle Scholar
  27. [1]
    On uniqueness for hyperbolic differential equations, Pacific J. Math.,10 (1960), pp. 677–688.MathSciNetGoogle Scholar
  28. [2]
    On existence in the large of solution of hyperbolic partial differential equations, Rend. Circ. Math. Palermo (2),11 (1962), pp. 225–236.Google Scholar
  29. [2]
    The Darboux Problem for a hyperbolic partial differential equation of second order, Buletinul institutulin politehnic din Iasi, Tomul XIX (XXIII), fasc. 3–4, sectia I, Matematica (1973), pp. 87–91.MathSciNetGoogle Scholar
  30. [1]
    Über die Differentialgleichung u xy =f(x, y, u, u x,u y), Teil I, Math. Z.,71 (1959), pp. 308–324.CrossRefzbMATHMathSciNetGoogle Scholar
  31. [2]
    Walter W. Differential an integral inequalities, Ergebnisse der Mathematik und ihrer grenzegebiete Band SJ, Springer-Verlag, 1970.Google Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata 1977

Authors and Affiliations

  • Gérard Hecquet
    • 1
  1. 1.RonchinFrance

Personalised recommendations