Multiplication properties of the spacesB p,q s andF p,q s quasi-banach algebras of functions

  • 130 Accesses

  • 15 Citations


Let A be either B p, qs or F p, qs , where - ∞<s <∞; 0<p, q≦∞ (spaces of Besov-Hardy-Sobolev type, defined on Rn). (i) If g ∈C ϱ (Hölder-Zygmund spaces), then f → gf is a bounded operator from A into A, provided that ϱ=ϱ(s, p, q, n) is large enough. (ii) There are given sufficient conditions for s, p, and q ensuring that A is a subalgebra of C (space of uniformly continuous bounded functions on Rn).


  1. [1]

    C. Bennett -J. E. Gilbert,Homogeneous algebras on the circle- II:Multipliers, Ditkin conditions, Annales Inst. Fourier, Grenoble,22, 3 (1972), pp. 21–50.

  2. [2]

    C. Fefferman -E. M. Stein,H p spaces of several variables, Acta Math.,129 (1972), pp. 137–193.

  3. [3]

    B. Grevholm, On the structure of the spacesL k p, λ , Math. Scand.,26 (1970), pp. 241–254.

  4. [4]

    C. S. Herz,Lipschitz spaces and Bernstein's theorem on absolutely convergent Fourier transforms, Journ. Math. Mechanics,18, 4 (1968), pp. 283–324.

  5. [5]

    R. Johnson,Maximal subspaces of Besov spaces invariant under multiplication by characters, preprint.

  6. [6]

    P. I. Lizorkin,Properties of functions of the spaces Λ p,θ r , Trudy mat. inst. Steklov akad. Nauk SSSR,131 (1974), pp. 158–181 (Russian).

  7. [7]

    J. Peetre,Sur les espaces de Besov, Compt. Rend. Acad. Sci. Paris, A264 (1967), pp. 281–283.

  8. [8]

    J. Peetre,Remarques sur les espaces de Besov. Le cas 0<p<1, Compt. Rend. Acad. Sci. Paris, A277 (1973), pp. 947–950.

  9. [9]

    J. Peetre,On spaces of Triebel-Lizorkin type, Ark. Matem.,13 (1975), pp. 123–130.

  10. [10]

    J. Peetre,Hp spaces, Lecture notes, Lund (1974).

  11. [11]

    H. Triebel,Spaces of distributions of Besov type on Euclidean n-space. Duality, interpolation, Ark. Matem.,11 (1973), pp. 13–64.

  12. [12]

    H. Triebel,Interpolation theory, function spaces, differential operators, VEB Deutscher Verl. Wissenschaften, Berlin (1977).

  13. [13]

    H. Triebel,General function spaces - V. (The spaces B p,q q (x) and F p,q g (x) :the case 0<p≦∞). Math. Nachr. (to appear).

  14. [14]

    H. Triebel, On spaces of B ∞,q s type andB ∞, q s type, Math. Nachr. (to appear).

  15. [15]

    R. S. Strichartz,Multipliers a fractional Sobolev spaces, Journ. Math. Mechanics,16 (1967), pp. 1031–1060.

Download references

Author information

Additional information

Entrata in Redazione il 17 marzo 1976.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Triebel, H. Multiplication properties of the spacesB p,q s andF p,q s quasi-banach algebras of functions. Annali di Matematica 113, 33–42 (1977) doi:10.1007/BF02418365

Download citation


  • Multiplication Property
  • Bounded Operator
  • Bounded Function
  • Continuous Bounded Function