Advertisement

Annali di Matematica Pura ed Applicata

, Volume 65, Issue 1, pp 311–328 | Cite as

Regolarità alla frontiera di soluzioni di equazioni ellittiche

  • Carlo Pucci
Article

Sunto

Si studia la hölderianità in prossimità della frontiera delle soluzioni delle equazioni uniformemente ellittiche del secondo ordine.

Summary

We consider uniform elliptic equations of the second order in a domain with the exterior cone property and we investigate the Hölder exponent and coefficient of the solutions near the boundary. We prove that both are independent by the continuity of the differential operator wit respect to the variables.

Bibliografia

  1. [1]
    S. Agmon -A. Douglis -L. Nirenberg,Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, I « Comm. pure appl. math. » 12, 1959, pp. 623–727.MathSciNetGoogle Scholar
  2. [2]
    L. Bers - L. Nirenberg,On linear and non-linear elliptic boundary value problems in the plane, « Convegno Int. Eq. a derivate parz. » Trieste 1954.Google Scholar
  3. [3]
    R. Caccioppoli,Sulle equazioni ellittiche a derivate parziali con n variabili indipendenti, « Rend. Acc. Lincei » 19, 1934, 83–89.zbMATHGoogle Scholar
  4. [4]
    E. De Giorgi,Sulla differenziabilità e l'analiticità delle estremali degli integrali multipli regolari, « Mem. Acc. Sc. Torino » III, Parte I, pp. 25–43 (1957).zbMATHGoogle Scholar
  5. [5]
    R. Finn -J. Serrin,On the Hölder continuity of quasi-conformal and elliptic mappings, « Trans. Amer. Math. Soc. » 89, (1958) pp. 1–15.CrossRefMathSciNetGoogle Scholar
  6. [6]
    R. Herné,Recherches axiomatiques sur la théorie des fonctions surharmoniques et du potential, « Ann. Ist. Fourier, Grenoble » 12, (1962), pp. 415–57.Google Scholar
  7. [7]
    O. Kellog,On the derivatives of harmonic functions on the boundary, « Trans. Amer. Math. Soc. » 33 (1931) pp. 486–510.CrossRefMathSciNetGoogle Scholar
  8. [8]
    H. Lebesgue,Sur des cas d'impossibilité du probleme de Dirichlet, « Comptes Rendus de la Soc. Math. de France » (1913).Google Scholar
  9. [9]
    Littman, Stampacchia, Weinberger,Regular points for elliptic equations with discontinuous coefficients, « Annali Scuola Norm. Pisa » III, 17, (1963) pp. 45–79.Google Scholar
  10. [10]
    C. Miranda,Equazioni alle derivate parziali di tipo ellittico, « Ergeb. der Math. Sprin. ger » Verlag Berlin (1955).Google Scholar
  11. [11]
    J. Moser,On Harnack theorem for elliptic differential equations, « Comm. Pure Applied Math. » 14, pp. 577–591, (1961).zbMATHGoogle Scholar
  12. [12]
    J. Nash,Continuity of the solutions of parabolic and elliptic equations, « Amer. J. Math. » 80, pp. 931–954, (1959).MathSciNetGoogle Scholar
  13. [13]
    L. Nirenberg,On non-linear elliptic partial differential equations and Hölder continuity, « Comm. pure appl. math. » 6, (1953), pp. 103–155.zbMATHMathSciNetGoogle Scholar
  14. [14]
    O. Oleinik,Sul problema di Dirichlet per le equazioni di tipo ellittico (in russo) Math. Sbr. N. S. 24, 66 (1949), pp. 3–14.zbMATHMathSciNetGoogle Scholar
  15. [15]
    C. Pucci,Sulle funzioni barriera, « Le Matematiche » 1963.Google Scholar
  16. [16]
    -- --,Lectures on the Cauchy Problem and on Second Order Elliptic Equations « National Science Foundation, Summer Institute in Applied Math. » Rice University 1963.Google Scholar
  17. [17]
    W. Püschel,Dier erste Randverttaufgabe der allgemeinen sebbstradjungierten elliptischen Differentialgleichung zweiter Ordnung fur beliebige Gebiete, « Math. Zeit » 34 (1931), pp. 535–553.CrossRefGoogle Scholar
  18. [18]
    J. Schauder,Über lineare elliptische Differentialgleichungen zweiter Ordnung, « Math. Z. 38 (1934) 267–282.CrossRefMathSciNetGoogle Scholar
  19. [19]
    G. Tautz,Zur Theorie der ersten Randwertanfgabe, « Math. Nach. » 2 (1949) pp. 279–303.zbMATHMathSciNetGoogle Scholar
  20. [20]
    N. Wiener,The Dirichlet problem, « J. Math. and Phys. » 3, (1924), pp. 127–146.zbMATHGoogle Scholar

Copyright information

© Nicola Zanichelli Editore 1964

Authors and Affiliations

  • Carlo Pucci
    • 1
  1. 1.Genova

Personalised recommendations