Advertisement

Parametrized\(\bar \partial \) operator on pseudoconvex setsoperator on pseudoconvex sets

  • 21 Accesses

Sunto

Si dimostra l'esistenza della soluzione per l'operatore di Cauchy-Riemann parametrizzato, nel caso continuo per varietà fortemente pseudoconvesse e nel caso differenziabile per varietà di Stein.

Bibliography

  1. [1]

    H. Cartan,Espaces fibrés analytiques, Symposium Internacional de Topologia algebraica, Mexico, 1958.

  2. [2]

    H. Grauert,Analytische Faserungen ueber holomorph-vollstaendigen komplexen Raeumen, Math. Ann.,135 (1958), pp. 263–273.

  3. [3]

    A. Grothendieck,Résumé des résultats essentiels dans la théorie des produits tensoriels topologiques et des espaces nucléaires, Ann. Inst. Fourier,4 (1952), pp. 73–112.

  4. [4]

    L. Hörmander, L2-Estimates and existence theorems for the\(\bar \partial \) operator, Acta Math.,113 (1965), pp. 89–152.

  5. [5]

    L. Hörmander,Introduction to analysis in several complex variables, D. Van Nostrand (1966).

  6. [6]

    K. Kodaira -D. C. Spencer,On deformations for complex analytic structures, I, II, Ann. of Math.,67 (1958), pp. 328–466.

  7. [7]

    J. J. Kohn,Harmonic integrals on strongly pseudoconvex manifolds, I, II, Ann. of Math., I,78 (1963), pp. 112–148, II,79 (1964), 450–472.

  8. [8]

    L. Nirenberg,A complex Frobenius theorem, Conf. on analytic functions, Inst. for adv. Study, 1958.

  9. [9]

    C. Rea,Le problème de Cauchy-Riemann pour des structures mixtes, Ann. Sc. Norm. Sup. Pisa,22 (1968), pp. 695–727.

  10. [10]

    C. Rea,Deformazioni di strutture su varietà, Rend. Sem. Mat. Torino,30 (1970–71), pp. 149–164.

Download references

Author information

Additional information

Entrata in Redazione il 20 maggio 1975.

Supported by C.N.R. research groups.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rea, C. Parametrized\(\bar \partial \) operator on pseudoconvex setsoperator on pseudoconvex sets. Annali di Matematica 110, 161–175 (1976) doi:10.1007/BF02418004

Download citation