Advertisement

On solutions of algebraic differential equations whose coefficients are analytic functions in the unit disk

  • 28 Accesses

  • 6 Citations

Summary

We investigate the growth of solutions for a class of first-order algebraic differential equations

Bibliography

  1. [1]

    S. Bank,On the growth of solutions of algebraic differential equations whose coefficients are arbitrary entire functions, Nagoya Math. J.,39 (1970), pp. 107–117.

  2. [2]

    S. Bank,A result concerning meromorphic solutions in the unit disk of algebraic differential equations, Comp. Math.,22 (1970), pp. 367–381.

  3. [3]

    S. Bank,A note on algebraic differential equations whose coefficients are entire functions of finite order, to appear.

  4. [4]

    R. Nevanlinna,Le Théorème de Picard-Borel et la théorie des fonctions méromorphes, Gauthier-Villars, Paris, 1929.

  5. [5]

    R. Nevanlinna,Analytic functions, Springer-Verlag, New York, 1970 (English trans.).

  6. [6]

    S. Saks - A. Zygmund,Analytic functions, Monografie Mat. (Englsh transl.), Tom 28, Warsaw, 1952.

  7. [7]

    M. Tsuji,Canonical product for a meromorphic function in a unit circles, J. Math. Soc. Japan,8 (1956), pp. 7–21.

  8. [8]

    G. Valiron,Fonctions analytiques et équations différentielles, J. Math. pures et appl.,31 (1952), pp. 292–303.

  9. [9]

    G. Valiron,Lectures on the general theory of integral functions, Edouard Privat, Toulouse, 1923.

Download references

Author information

Additional information

Entrata in Redazione il 22 maggio 1971.

This research was supported in part by the National Science Foundation (GP 19590)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bank, S.B. On solutions of algebraic differential equations whose coefficients are analytic functions in the unit disk. Annali di Matematica 92, 323 (1972) doi:10.1007/BF02417951

Download citation

Keywords

  • Differential Equation
  • Analytic Function
  • Unit Disk
  • Algebraic Differential Equation