Annali di Matematica Pura ed Applicata

, Volume 92, Issue 1, pp 217–262 | Cite as

Interpolation of normed abelian groups

  • J. Peetre
  • G. Sparr
Article

Summary

A theory of interpolation of normed Abelian groups is developed, which notably generalizes and extends the theory of K- and J-spaces in the Banach space case. Various applications to approximation theory and other branches of analysis are given.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    T. Aoki,Locally bounded linear topological spaces, Proc. Imp. Acad. Tokyo,18 (1942), pp. 588–594.MATHMathSciNetCrossRefGoogle Scholar
  2. [2]
    N. Aronszajn -E. Gagliardo,Interpolation spaces and interpolation methods, Ann. Mat. Pura Appl.,68 (1965), pp. 51–118.CrossRefMathSciNetMATHGoogle Scholar
  3. [3]
    N. Bourbaki,Topologie générale. Chapitre 9:Utilisation des nombres réels en topologie générale, Hermann, Paris, 1958.Google Scholar
  4. [4]
    P. L. Butzer -H. Berens,Semi-groups of operators and approximation, Springer, Berlin, 1967.MATHGoogle Scholar
  5. [5]
    E. W. Cheney -K. Price,Minimal projections. Approximation theory (ed.A. Talbot), Proceedings of a Symposium held at Lancaster, July 1969, Academic Press, London, 1970.Google Scholar
  6. [6]
    J. C. Gohberg -M. G. Krein,Introduction to the theory of nonselfadjoint operators, Izd. Nauka, Moscow, 1965 (Russian).Google Scholar
  7. [7]
    A. A. Gončar,The accuracy of approximation with rational functions and properties of functions, Proceedings of International Congress of Mathematicians (Moscow, 1966), Izd. «Mir», Moscow, 1968 (Russian).Google Scholar
  8. [8]
    T. Holmstedt,Interpolation of quasi-normed spaces, Math. Scand.,26 (1970), pp. 177–199.MATHMathSciNetGoogle Scholar
  9. [9]
    P. Krée,Interpolation d'espaces qui ne sont ni normés, ni complets. Applications, Ann. Inst. Fourier,17 (1968), pp. 137–174.Google Scholar
  10. [10]
    G. Köthe,Topologische lineare Räume, I, Springer, Berlin, 1960.MATHGoogle Scholar
  11. [11]
    C. G. Lorentz,Approximation of functions, Holt, New York, 1966.MATHGoogle Scholar
  12. [12]
    B. S. Mitiagin - A. Pełczynski,Nuclear operators and approximate dimension, Proceedings of International Congress of Mathematicians (Moscow, 1966), Izd. «Mir», Moscow, 1968.Google Scholar
  13. [13]
    P. S. Mostert -A. L. Shields,On the structure of semigroups on a compact manifold with boundary, Ann. Math.,65 (1957), pp. 117–143.CrossRefMathSciNetGoogle Scholar
  14. [14]
    J. Musielak - J. Peetre,F-modular spaces. To appear.Google Scholar
  15. [15]
    J. von Neumann,Continuous geometry, Princeton, 1960.Google Scholar
  16. [16]
    R. Oloff,p-Normideale von Operatoren in Banachräumen, Wiss. Z. Friedrich-Schiller-Univ. Jena/Thüringen,18 (1969), pp. 259–262.MATHMathSciNetGoogle Scholar
  17. [17]
    R. Oloff,Interpolation zwischen den Klassen S p von Operatoren in Hilberträumen, Math. Nachr.,46 (1970), pp. 209–218.MATHMathSciNetGoogle Scholar
  18. [18]
    J. Peetre,A theory of interpolation of normed spaces, Notes, Brasilía, 1963 (≈ Notas de matematica no. 39, 1968).Google Scholar
  19. [19]
    J. Peetre,On interpolation functions, III, Acta Sci. Math. (Szeged),30 (1969), pp. 235–239.MATHMathSciNetGoogle Scholar
  20. [20]
    J. Peetre,On the connection between the theory of interpolation spaces and approximation theory, Proc. of the Conf. on Constructive Theory of Functions, Akadèmiai Kiadò Budapest, 1971, pp. 351–362Google Scholar
  21. [21]
    J. Peetre,A new approach in interpolation spaces,Studia Math.,34 (1970), pp. 23–42.MATHMathSciNetGoogle Scholar
  22. [22]
    J. Peetre,Approximation of linear operators, Procedings of the International Conference on Constructive Function Theory, Varna, May 19–25, 1970, Publishing House of the Bulgarian Accademy of Sciences, Sofia, 1972, pp. 245–263.Google Scholar
  23. [23]
    J. Peetre,Zur Interpolation von Operatorenräumen, Arch. Mat. (Basel),21 (1970), pp. 601–608.CrossRefMathSciNetGoogle Scholar
  24. [24]
    J. Peetre,Banach couples. Technical report, Lund 1971.Google Scholar
  25. [25]
    J. Peetre,Analysis in quasi-Banch spaces and approximation theory, Notes Sept.–Nov. 1970, Lund, 1972.Google Scholar
  26. [26]
    A. Pietsch,Einige neue Klassen von kompaklen linearen Abbildungen, J. Math. Pures Appl.,3 (1963), pp. 427–447.MathSciNetGoogle Scholar
  27. [27]
    A. Pietsch,Ideal von Operatoren in Banachräumen, Mitt. Math. Gesselsch. D.D.R.,1 (1968), pp. 1–14.MATHGoogle Scholar
  28. [28]
    A. Pietsch,Ideale von S p-Operatoren in Banachràumen, Studia Math.38 (1970), pp. 59–69.MATHMathSciNetGoogle Scholar
  29. [29]
    S. Rolewicz,On a certain class of linear metric spaces, Bull. Acad. Polon. Sci. Cl. III,5 (1957), pp. 471–473.MATHMathSciNetGoogle Scholar
  30. [30]
    S. B. Stečkin,Best approximation of linear operators, Mat. Zametki,1 (1967), pp. 137–148 (Russian).MathSciNetGoogle Scholar
  31. [31]
    S. B. Stečkin,Best approximation of differentiation operators, Budapest Meeting, Aug. 1969. Unpublished lecture.Google Scholar
  32. [32]
    H. Triebel,Über die Verteilung der Approximationszahlen kompakter Operatoren in Sobolev-Besov-Räumen, Inv. Math.,4 (1967), pp. 275–293.CrossRefMATHMathSciNetGoogle Scholar
  33. [33]
    H. Triebel,Interpolationseigenschaften von Entropie- und Durchmesseridealen kompakter Operatoren, Studia Math.,34 (1970), pp. 89–107.MATHMathSciNetGoogle Scholar

Copyright information

© Nicola Zanichelli Editore 1972

Authors and Affiliations

  • J. Peetre
    • 1
  • G. Sparr
    • 1
  1. 1.LundSvezia

Personalised recommendations