Advertisement

Annali di Matematica Pura ed Applicata

, Volume 92, Issue 1, pp 193–198 | Cite as

Periodic solutions of a third order nonlinear differential equation

  • Rolf Reissig
Article

Summary

The differential equation x‴ + ϕ(x′)x″ + ϕ(x)x′ + f(x)=p(t) is considered where the forcing term p is an ω-periodic function of t. In the special cases ϕ(x)=k2 respectively ϕ(x′)=a the existence of periodic solutions is proved on the basis of the Lerag-Schauder fixed point technique. The conditions imposed on the nonlinear terms do not include the ultimate boundedness of all solutions.

Keywords

Differential Equation Periodic Solution Nonlinear Term Nonlinear Differential Equation Force Term 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Bibliography

  1. [1]
    J. O. C. Ezeilo,A generalization of a theorem of Reissig for a certain third order differential equation, Ann. Mat. Pura Appl.,87 (1970), pp. 349–356.CrossRefzbMATHMathSciNetGoogle Scholar
  2. [2]
    R. Reissig,On the existence of periodic solutions of a certain non-autonomous differential equation, Ann. Mat. Pura Appl.,85 (1970), pp. 235–240.CrossRefzbMATHMathSciNetGoogle Scholar
  3. [3]
    R. Reissig,Note on a certain non-autonomous differential equation, Acc. Naz. Lincei, Rend. Cl. Sci. fis. mat. nat., Ser. VIII, Vol.48 (1970), pp. 246–248.MathSciNetGoogle Scholar
  4. [4]
    R. Reissig,Periodic solutions of a nonlinear n-th order vector differential equation, Ann. Mat. Pura Appl.,87 (1970), pp. 111–124.CrossRefzbMATHMathSciNetGoogle Scholar
  5. [5]
    G. Villari,Contributi allo studio dell'esistenza di soluzioni periodiche per i sistemi di equazioni differenziali ordinarie, Ann. Mat. Pura Appl.,69 (1965), pp. 171–190.CrossRefzbMATHMathSciNetGoogle Scholar
  6. [6]
    G. Villari,Soluzioi periodiche di una classe di equazioni differenziali del terz'ordine quasi lineari, Ann. Mat. Pura Appl.,73 (1966), pp. 103–110.CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Nicola Zanichelli Editore 1972

Authors and Affiliations

  • Rolf Reissig
    • 1
  1. 1.Bochum

Personalised recommendations