Advertisement

Annali di Matematica Pura ed Applicata

, Volume 92, Issue 1, pp 169–175 | Cite as

Some fixed-points theorems for multi-valued mappings in topological vector spaces

  • Massimo Furi
  • Mario Martelli
Article

Keywords

Vector Space Topological Vector Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Sunto

Si danno dei teoremi di punto fisso der trasformazioni multivoche non compatte, definite in un sottoinsieme convesso e chiuso di uno spazio lineare topologico, localmente convesso e di Hausdorff. Tali teoremi estendono alcuni noti risultati dovuti a Darbo, Sadovskij, Daneš ed altri.

References

  1. [1]
    C. Kuratowski,Sur les espaces completes, Fund. Math.,15 (1930), pp. 301–309.zbMATHGoogle Scholar
  2. [2]
    C. Kuratowski,Topologie, Monografie Matematiczne, Tom 20, Warzawa (1958).Google Scholar
  3. [3]
    M. Furi - M. Martelli,A characterization of compact filterbasis in complete metric spaces, Rend. Istituto di Matem. Univ. di Trieste, vol. II, fasc. II (1970).Google Scholar
  4. [4]
    B. N. Sadovskij,A fixed point principle, Funktsional'nyi Analiz i ego Prilozheniya (in russian),1, no. 2 (1967).Google Scholar
  5. [5]
    G. Darbo,Punti uniti in trasformazioni a codominio non compatto, Rend. Sem. Mat. Padova,24 (1955), pp. 84–92.zbMATHMathSciNetGoogle Scholar
  6. [6]
    R. D. Nussbaum,The fixed point index and fixed-point theorems for k-set-contractions, University of Chicago Ph. D. dissertation (1969).Google Scholar
  7. [7]
    F. E. Browder,Semicontractive and semiaccretive nonlinear mappings in Banach spaces, Bull. Amer. Math. Soc.,74 (1968), pp. 660–665.zbMATHMathSciNetCrossRefGoogle Scholar
  8. [8]
    E. A. Lifšic -B. N. Sadovskij,A fixed point theorem for generalized concentrative mappings, Doklady AN SSSR,133 (1968), pp. 278–279.Google Scholar
  9. [9]
    J. Daneš,Some fixed-point theorems, Comment. Math. Univ. Carolinae,9 (1968), pp. 223–235.MathSciNetzbMATHGoogle Scholar
  10. [10]
    J. Daneš,Generalized concentrative mappings and their fixed-points, Comment. Math. Univ. Carolinae,11 (1970), pp. 115–136.MathSciNetzbMATHGoogle Scholar
  11. [11]
    C. J. Himmelberg -J. R. Porter -F. S. van Vlek,Fixed-point theorems for condensing multifunctions, Proc. Am. Math. Soc.,23 (1969), pp. 635–641.CrossRefzbMATHGoogle Scholar
  12. [12]
    I. J. Glicksberg,A further generalization of the Kakutani fixed-point theorem, with application to Nash equilibrium points, Proc. Am. Math. Soc.,3 (1952), pp. 170–174.CrossRefzbMATHMathSciNetGoogle Scholar
  13. [13]
    E. Michael,A selection Theorem, Proc. Am. Math. Soc.,17 (1966), pp. 1404–1406.CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Nicola Zanichelli Editore 1972

Authors and Affiliations

  • Massimo Furi
    • 1
  • Mario Martelli
    • 1
  1. 1.Florence

Personalised recommendations