Annali di Matematica Pura ed Applicata

, Volume 117, Issue 1, pp 153–171 | Cite as

Sul minimo di funzionali definiti sullo spazio delle funzioni di variazione limitata inn dimensioni

  • Francesco Ferro


Given a proper normal integrand we define a functional on the space of functions of bounded variations inRn; sufficient conditions which assure the existence of the minimum of this functional are given.


  1. [1]
    O. Caligaris -F. Ferro -P. Oliva,Sull'esistenza del minimo per problemi di calcolo delle variazioni relativi ad archi di variazione limitata, Boll. UMI, (5)14-B (1977), pp. 340–369.MathSciNetGoogle Scholar
  2. [2]
    N. Bourbaki,Elements de mathématique, Livre VI,Intégration, Hermann et Cie, Act. Sci. et Ind. 1175, Paris (1952).Google Scholar
  3. [3]
    W. H. Fleming,Functions whose partial derivatives are measures, Illinois J. Math.,4 (1960), pp. 452–478.zbMATHMathSciNetGoogle Scholar
  4. [4]
    A. D. Ioffe -V. M. Tihomirov,Extension of variational problems, Trans. Moscow Math. Soc.,18 (1968), pp. 207–273.MathSciNetGoogle Scholar
  5. [5]
    J. L. Kelley:General Topology, Van Nostrand, Princeton, N. J. (1960).Google Scholar
  6. [6]
    R. Larsen,Functional Analysis, N. Dekker, New York (1973).Google Scholar
  7. [7]
    C. B. Morrey,Multiple Integrals in the Calculus of Variations, Springer-Verlag, Berlin (1966).Google Scholar
  8. [8]
    J. Nečas,Les méthodes directes en théorie des équations elliptiques, Masson et Cie, Paris-Academia, Prague (1967).Google Scholar
  9. [9]
    R. T. Rockafellar,Dual problems of Lagrange for arcs of bounded variation, to appear in Calculus of variations and control theory, D. L. Russel editor, Academic Press (1976). Proceedings of a Conference at the Math. Research Center, Univ. of Wisconsin, Madison (September 1975).Google Scholar
  10. [10]
    R. T. Rockafellar,Integral functionals, normal integrands and measurable selections, Nonlinear operators and the calculus of variations, L. Waelbroeck editor, Springer-Verlag series Lecture Notes in Math. (1976).Google Scholar
  11. [11]
    L. Schwartz,Théorie des distributions II, Paris, Hermann (1950).Google Scholar
  12. [12]
    J. Serrin,On the definition and properties of certain variational integrals, Trans. Amer. Math. Soc.,101 (1961), pp. 139–167.CrossRefzbMATHMathSciNetGoogle Scholar
  13. [13]
    O. Caligaris -P. Oliva,Problemi di Bolza per archi di variazione limitata ed estensioni di funzionali variazionali, Boll. UMI, (5)14-B (1977), pp. 772–785.MathSciNetGoogle Scholar
  14. [14]
    F. Ferro,Functionals defined on functions of bounded variation in R n and the Lebesgue area, SIAM J. Control Optimization,16, no. 5, Sept. 1978.Google Scholar

Copyright information

© Nicola Zanichelli Editore 1978

Authors and Affiliations

  • Francesco Ferro
    • 1
  1. 1.Genova

Personalised recommendations