Annali di Matematica Pura ed Applicata

, Volume 117, Issue 1, pp 115–138 | Cite as

On vector bimeasures

  • Kari Ylinen


  1. [1]
    R. G. BartleN. DunfordJ. T. Schwartz,Weak compactness and vector measures, Canad. J. Math.,7 (1955), pp. 289–305.MathSciNetzbMATHGoogle Scholar
  2. [2]
    C. BessagaA. Pełczyński,On bases and unconditional convergence of series in Banach spaces, Studia Math.,17 (1958), pp. 151–164.MathSciNetzbMATHGoogle Scholar
  3. [3]
    J. K. BrooksP. W. Lewis,Linear operators and vector measures, Trans. Amer. Math. Soc.,192 (1974), pp. 139–162.CrossRefMathSciNetzbMATHGoogle Scholar
  4. [4]
    N. DinculeanuI. Kluvánek,On vector measures, Proc. London Math. Soc., (3)17 (1967), pp. 505–512.MathSciNetGoogle Scholar
  5. [5]
    M. Duchon,On vector measures in Cartesian products, Mat. Casopis Sloven. Akad. Vied,21 (1971), pp. 241–247.zbMATHMathSciNetGoogle Scholar
  6. [6]
    N. DunfordJ. T. Schwartz,Linear operators. — I:General theory, Pure and Appl. Math., Vol. 7, Interscience, New York, 1958.Google Scholar
  7. [7]
    M. Fréchet,Sur les fonctionnelles bilinéaires, Trans. Amer. Math. Soc.,16 (1915), pp. 215–234.CrossRefzbMATHMathSciNetGoogle Scholar
  8. [8]
    A. Grothendieck,Sur les applications linéaires faiblement compactes d'espaces au type C(K), Canad. J. Math.,5 (1953), pp. 129–173.zbMATHMathSciNetGoogle Scholar
  9. [9]
    I. Kluvánek,Characterizations of Fourier-Stieltjes transforms of vector and operator valued measures, Czechoslovak Math. J.,17 (92) (1967), pp. 261–277.zbMATHMathSciNetGoogle Scholar
  10. [10]
    I. Kluvánek — G. Knowles,Vector measures and control systems, North Holland Mathematics Studies 20, North Holland, Amsterdam-Oxford, 1975.Google Scholar
  11. [11]
    D. R. Lewis,Integration with respect to vector measures, Pacific J. Math.,33 (1970), pp. 157–165.zbMATHMathSciNetGoogle Scholar
  12. [12]
    M. Morse,Bimeasures and their integral extensions, Ann. Mat. Pura Appl., (4)39 (1955), pp. 345–356.zbMATHMathSciNetGoogle Scholar
  13. [13]
    M. MorseW. Transue,Integral representations of bilinear functionals, Proc. Nat. Acad. Sci. U.S.A.,35 (1949), pp. 136–143.MathSciNetzbMATHGoogle Scholar
  14. [14]
    M. MorseW. Transue,C-bimeasures Λ and their superior integrals Λ*, Rend. Circ. Mat. Palermo, (2)4 (1955), pp. 270–300 (1956).MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    M. MorseW. Transue,C-bimeasures Λ and their integral extensions, Ann. of Math., (2)64 (1956), pp. 480–504.CrossRefMathSciNetGoogle Scholar
  16. [16]
    M. MorseW. Transue,The representation of a bimeasure on a general rectangle, Proc. Nat. Acad. Sci. U.S.A.,42 (1956), pp. 89–95.MathSciNetzbMATHGoogle Scholar
  17. [17]
    H. Niemi,Stochastic processes as Fourier transforms of stochastic measures, Ann. Acad. Sci. Fenn., Ser. A I,591 (1975), pp. 1–47.MathSciNetGoogle Scholar
  18. [18]
    A. Pełczyński,Projections in certain Banach spaces, Studia Math.,19 (1960), pp. 209–228.MathSciNetzbMATHGoogle Scholar
  19. [19]
    W. Rudin,Real and complex analysis, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1966.zbMATHGoogle Scholar
  20. [20]
    E. Thomas,L'intégration par rapport à une mesure de Radon vectorielle, Ann. Inst. Fourier (Grenoble),20:2 (1970), pp. 55–191.zbMATHMathSciNetGoogle Scholar
  21. [21]
    K. Ylinen,Fourier transforms of noncommutative analogues of vector measures and bimeasures with applications to stochastic processes, Ann. Acad. Sci. Fenn., Ser. A I,1 (1975), pp. 355–385.zbMATHMathSciNetGoogle Scholar

Copyright information

© Nicola Zanichelli Editore 1978

Authors and Affiliations

  • Kari Ylinen
    • 1
  1. 1.TurkuFinland

Personalised recommendations