Advertisement

Annali di Matematica Pura ed Applicata

, Volume 104, Issue 1, pp 269–281 | Cite as

Extension of some results concerning the generalized Liénard equation

  • Rolf Reissig
Article

Summary

A recent result of Mawhin [7] concerning the existence of forced oscillations for a second order equation of Liénard type with an arbitrary damping term is extended to some cases where the restoring force is not assumed to be sufficiently weak. The results are valid, too, for a certain class of third order equations. They are based on the Leray-Schauder principle. By an analogous argumentation the Rayleigh equation with a quasilinear restoring force, but with an arbitrary damping term, is shown to possess a periodic solution. Again, the result admits an extension to a third order equation.

Keywords

Periodic Solution Recent Result Order Equation Forced Oscillation Analogous Argumentation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [1]
    T. A. Burton -C. G. Townsend,On the generalized Liénard equation with forcing term, J. Differential Equations,4 (1968), pp. 620–633.CrossRefMathSciNetGoogle Scholar
  2. [2]
    R. Faure,Solutions périodiques d'équations différentielles et méthode de Leray-Schauder (Cas de vibrations forcées), Ann. Inst. Fourier (Grenoble),14 (1964), pp. 195–204.zbMATHMathSciNetGoogle Scholar
  3. [3]
    J. R. Graef,On the generalized Liénard equation with negative damping, J. Differential Equations,12 (1972), pp. 34–62.CrossRefzbMATHMathSciNetGoogle Scholar
  4. [4]
    D. Graffi,Sulle oscillazioni forzale nella meccanica non-lineare, Riv. Mat. Univ. Parma,3 (1952), pp. 317–326.zbMATHMathSciNetGoogle Scholar
  5. [5]
    A. C. Lazer,On Schauder's fixed point theorem and forced second-order nonlinear oscillations, J. Math. Analysis Appl.,21 (1968), pp. 421–426.CrossRefzbMATHMathSciNetGoogle Scholar
  6. [6]
    J. Mawhin,Degré topologique et solutions périodiques des systèmes différentiels non linéaires, Bull. Soc. Royale Sci. Liège,38 (1969), pp. 308–398.zbMATHMathSciNetGoogle Scholar
  7. [7]
    J. Mawhin,An extension of a theorem of A. C. Lazer on forced nonlinear oscillations, J. Math. Analysis Appl.,40 (1972) pp. 20–29.CrossRefzbMATHMathSciNetGoogle Scholar
  8. [8]
    R. Reissig - G. Sansone - R. Conti,Nichtlineare Differentialgleichungen höherer Ordnung, Roma, 1969.Google Scholar
  9. [9]
    G. Sansone - R. Conti,Nonlinear differential equations (translated from the Italian byA. H. Diamond), Oxford, 1964.Google Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata 1974

Authors and Affiliations

  • Rolf Reissig
    • 1
  1. 1.Bochum

Personalised recommendations