Annali di Matematica Pura ed Applicata

, Volume 104, Issue 1, pp 123–149 | Cite as

On the boundedness of solutions of third order differential equations

  • Ethelbert Nwakuche Chukwu


This research investigates the boundedness, as t→∞, of solutions of the third order order differential equation 2.1(1). Special attention is drawn to a method in current usage which rests on the existence of appropriate Yoshizawa function with which ultimate boundedness is proved for all solutions of 2.1(1) under quite mild restraints on f, g, h and p.


Differential Equation Current Usage Order Differential Equation Ultimate Boundedness Order Order 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [1]
    M. L. Cartwright, Quart. J. Mech. Appl. Math.,9 (1956), pp. 185–194.zbMATHMathSciNetGoogle Scholar
  2. [2]
    J. O. C. Ezeilo, Proc. London Math. Soc.,9 (1959), pp. 74–114.zbMATHMathSciNetGoogle Scholar
  3. [3]
    J. O. C. Ezeilo, Proc. Cambridge Philos. Soc.,56 (1960), pp. 381–389.zbMATHMathSciNetCrossRefGoogle Scholar
  4. [4]
    J. O. C. Ezeilo, J. London Math. Soc.,36 (1961), pp. 439–444.zbMATHMathSciNetGoogle Scholar
  5. [5]
    J. O. C. Ezeilo, Proc. London Math. Soc.,3 (1963), pp. 99–124.MathSciNetGoogle Scholar
  6. [6]
    J. O. C. Ezeilo, Proc. Camb. Phil. Soc.,59 (1963), pp. 111–116.zbMATHMathSciNetGoogle Scholar
  7. [7]
    J. O. C. Ezeilo, J. London Math. Soc.,38 (1963), pp. 11–16.zbMATHMathSciNetGoogle Scholar
  8. [8]
    J. O. C. Ezeilo, Proc. International Symposium on Non-linear Vibrations, Kiev,2 (1963), pp. 513–538.zbMATHMathSciNetGoogle Scholar
  9. [9]
    J. O. C. Ezeilo, Ann. Mat. Pura Appl., (IV),66 (1964), pp. 233–250.CrossRefzbMATHMathSciNetGoogle Scholar
  10. [10]
    J. O. C. Ezeilo, Ann. Mat. Pura Appl., (IV),74 (1966), pp. 283–316.CrossRefzbMATHMathSciNetGoogle Scholar
  11. [11]
    J. O. C. Ezeilo, Proc. Cambridge Philos. Soc.,63 (1967), pp. 735–742.zbMATHMathSciNetCrossRefGoogle Scholar
  12. [12]
    J. O. C. Ezeilo, Proc. London Math. Soc.,17 (1967).Google Scholar
  13. [13]
    A. M. Lyapunov, Ann. of Math. Princeton, N. J., 1947.Google Scholar
  14. [14a]
    V. A. Pliss, Dokl. Akad. Nauk UZSSR,139 (1961), pp. 302–304.zbMATHMathSciNetGoogle Scholar
  15. [14b]
    V. A. Pliss,Non-local Problems in the Theory of Oscillations, translated by Scripta Technica, Academic Press, New York, 1966.Google Scholar
  16. [15]
    R. Reissig, Monatsb. Deutsch. Akad. Wiss. Berlin,6 (1954), pp. 481–484.MathSciNetGoogle Scholar
  17. [16]
    R. Reissig, Math. Nachr.,32 (1966), pp. 83–88.zbMATHMathSciNetGoogle Scholar
  18. [17]
    A. Strauss, Boll. Un. Mat. Ital.,12 (1967), pp. 434–445.MathSciNetGoogle Scholar
  19. [18a]
    H. O. Tejumola, Ph. D. Thesis, University of Ibadan, 1966.Google Scholar
  20. [18b]
    H. O. Tejumola, Ann. Math. Pura Appl.,74 (1969), pp. 195–212.CrossRefMathSciNetGoogle Scholar
  21. [19]
    T. Yoshizawa, Mem. Univ. Kyoto, Series A,28 (1953), pp. 133–141.Google Scholar
  22. [20]
    W. Leighton, Contributions Diff. Equations II (1963), pp. 367–383.MathSciNetGoogle Scholar
  23. [21]
    E. A. Barbasin, Prikl. Mat. Meh.,16 (1952), pp. 629–632.MathSciNetGoogle Scholar
  24. [22]
    S. N. Simanov, Prikl. Mat. Meh.,17 (1953), pp. 369–372.MathSciNetGoogle Scholar
  25. [23]
    J. LaSalle -S. Lefschetz,Stability by Liapunov Direct Method with Applications, Academic Press, New York, 1961.Google Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata 1974

Authors and Affiliations

  • Ethelbert Nwakuche Chukwu
    • 1
  1. 1.ClevelandU.S.A.

Personalised recommendations