# Congruence theorems for compact hypersurfaces of a riemannian manifold

• 20 Accesses

## Summary

Let Mm,$$\bar M$$ m be two m-dimensional compact oriented hypersurfaces of class C3 immersed in a Riemannian manifold Rm+1 of constant sectional curvature. Suppose that Rm+1 admits a one-parameter continuous group G of conformal transformations satisfying a certain condition (which holds automatically when G is a group of isometric transformations). Suppose further that there is a1 − 1 transformation Tτ ∈ G between Mm and$$\bar M$$ m such that$$\bar P = T_{\tau (P)} P$$ for each P ∈ Mm and each$$\bar P \in \bar M$$ m. If the r-th mean curvature for any r, 1 ⩽ r ⩽ m, of Mm at each point P ∈ Mm is equal to that of$$\bar M$$ m at the corresponding point$$\bar P = T_{\tau (P)} P$$, together with other conditions, then Mm and$$\bar M$$ m are congruent mod G. This is a generalization of a joint theorem ofH. Hopf andY. Katsurada [5] in which G is a group of isometric transformations.

## Bibliography

1. [1]

A. Aeppli,Einige Ähnlichkeits- und Symmetrie-sätze für differenzierbare Flächen im Raum, Comment. Math. Helv.,33 (1959), pp. 174–195.

2. [2]

L. P. Eisenhart,Riemannian geometry, Princeton University Press, Princeton, 1949.

3. [3]

H. Hopf -K. Voss,Ein Satz aus der Flächentheorie im Grossen, Arch. Math.,3 (1952), pp. 187–192.

4. [4]

H. Hopf -Y. Kutsurada,Some congruence theorems for closed hypersurfaces in Riemann spaces. — II:Method based on a maximum principle, Comment. Math. Helv.,43 (1968), pp. 217–223.

5. [5]

H. Hopf -Y. Katsurada,Some congruence theorems for closed hypersurfaces in Riemann spaces. — III:Method based on Voss' proof, Comment. Math. Helv.,46 (1971), pp. 478–486.

6. [6]

C. C. Hsiung,Some global theorems on hypersurfaces, Canad. J. Math.,9 (1957), pp. 5–14.

7. [7]

C. S. Hsü,Characterization of some elementary transformations, Proc. Amer. Math. Soc.,10 (1959), pp. 324–328.

8. [8]

Y. Katsurada,Some congruence theorems for closed hypersufaces in Riemann spaces. — I:Method based on Stokes' theorem, Comment. Math. Helv.,43 (1968), pp. 176–194.

9. [9]

R. E. Stong,Some global properties of hypersurfaces, Proc. Amer. Math. Soc.,11 (1960), pp. 126–131.

10. [10]

A. W. Tucker,On generalized covariant differentiation, Ann. of Math.,32 (1931), pp. 451–460.

11. [11]

K. Voss,Einige differentialgeometrische Kongruenzsätze für geschlossene Flächen und Hyperflächen, Math. Ann.,131 (1956), pp. 180–218.

12. [12]

C. E. Weatherburn,An introduction to Riemannian geometry and the tensor calculus, Cambridge University Press, Cambridge, 1950.

## Author information

Entrata in Redazione il 13 Giugno 1975.

The first author was partially supported by the National Science Foundation grant GP-33944.

## Rights and permissions

Reprints and Permissions

Hsiung, C., Lo, T.P. Congruence theorems for compact hypersurfaces of a riemannian manifold. Annali di Matematica 109, 289–304 (1976). https://doi.org/10.1007/BF02416965