Advertisement

Fourier analysis of arithmetical functions

  • 41 Accesses

  • 19 Citations

Summary

Some contributions are made towards a Fourier-type theory of arithmetical functions, which, without appealing to classical notions of periodicity, in many ways parallels the Bohr and Besicovitch theories of ordinary almost periodic functions.

References

  1. [1]

    H. Bohr -E. Følner,On some types of functional spaces. A contribution to the theory of almost periodic functions, Acta Math.,76 (1944), pp. 31–155.

  2. [2]

    C. W. Burrill,Measure, Integration and Probability, McGraw-Hill, New York (1972).

  3. [3]

    E. Cohen,On the inversion of even functions of finite abelian groups (mod H), J. reine angew. Math.,207 (1961), pp. 192–202.

  4. [4]

    E. Cohen,Almost even functions of finite abelian groups, Acta Arith.,7 (1962), pp. 311–323.

  5. [5]

    F. De LeeuwI. Glicksberg,Applications of almost periodic compactifications, Acta Math.,105 (1961), pp. 63–97.

  6. [6]

    J. Delsarte,Essai sur l'application de la théorie des fonctions presque-periodiques à l'arithmétique, Ann. Sci. École Norm. Sup.,62 (1945), pp. 185–204.

  7. [7]

    J. Dugundi,Topology, Allyn and Bacon, Boston (1966).

  8. [8]

    P. Erdøs -M. Kac -E. R. Van Kampen -A. Wintner,Ramanujan sums and almost periodic functions, Studia Math.,9 (1940), pp. 43–53.

  9. [9]

    E. Følner,On the dual spaces of the Besicovitch almost periodic spaces, K. Danske Videnskab. Selskab., Mat.-fys. Medd.,29 (1954), no. 1, pp. 1–27.

  10. [10]

    D. K. Harrison,Finite and infinite primes for rings and fields, Memoirs Amer. Math. Soc.,68 (1966).

  11. [11]

    G. Helmberg,Abstract theory of uniform distribution, Compos. Math.,16 (1964), pp. 72–82.

  12. [12]

    E. M. Horadam,Ramanujan's sum for generalized integers, Duke Math. J.,31 (1964), pp. 697–702 and33 (1966), pp. 705–708.

  13. [13]

    E. M. Horadam,Ramanujan's sum and its applications to the enumerative functions of certain sets of elements of an arithmetical semigroup, J. Math. Sci.,3 (1968), pp. 47–70.

  14. [14]

    B. Jessen -A. Wintner,Distribution functions and the Riemann zeta function, Trans. Amer. Math. Soc.,38 (1935), pp. 44–88.

  15. [15]

    M. Kac -E. R. Van Kampen -A. Wintner,Ramanujan sums and almost periodic functions, Amer. J. Math.,62 (1940), pp. 107–114.

  16. [16]

    J. Knopfmacher,Arithmetical properties of finite rings and algebras, and analytic number theory, I–VI, J. reine angew. Math.,252 (1972), pp. 16–43;254 (1972), pp. 74–99;259 (1973), pp. 157–170;270 (1974), pp. 97–114;271 (1974), pp. 95–121;277 (1975), pp. 45–62.

  17. [17]

    J. Knopfmacher -J. N. Ridley,Prime-independent arithmetical functions, Ann. Mat. Pura ed Appl.,101 (1974), pp. 153–169.

  18. [18]

    L. H. Loomis,Abstract Harmonic Analysis, Van Nostrand, Princeton (1953).

  19. [19]

    E. Lukacs,Characteristic Functions, Griffin, London (1960).

  20. [20]

    S. Ramanujan,On certain trigonometrical sums and their applications in the theory of numbers, Trans. Cambridge Phil. Soc.,22 (1918), pp. 259–276.

  21. [21]

    G. J. Rieger,Ramanujansche Summen in algebraischen Zahlkörpern, Math. Nachr.,22 (1960), pp. 371–377.

  22. [22]

    W. Schwarz,Ramanujan-Entwicklungen stark multiplikativer zahlentheoretischer Funktionen, I–II, Acta Arith.,22 (1973), pp. 329–338;27 (1975), pp. 269–279.

  23. [23]

    W. Schwarz,Ramanujan-Entwicklungen stark multiplikativer Funktionen, J. reine angew. Math.,262/3 (1973), pp. 66–73.

  24. [24]

    W. Schwarz,Die Ramanujan-Entwicklung reelwertiger multiplikativer Funktionen vom Betrage kleiner order gleich Eins, J. reine angew. Math.,271 (1974), pp. 171–176.

  25. [25]

    W. Schwarz -J. Spilker,Eine Anwendung des Approximationssatzes von Weierstrass-Stone auf Ramanujan-Summen, Nieuw Arch. Wiskunde, (3),19 (1971), pp. 198–209.

  26. [26]

    Z. Semadeni,Banach Spaces of Continuous Functions, Polish Scientific Publishers, Warszawa (1971).

  27. [27]

    E. R. Van Kampen,On uniformly almost periodic multiplicative and additive functions, Amer. J. Math.,62 (1940), pp. 627–634.

  28. [28]

    H. Wegmann,Beiträge zur Zahlentheorie auf freien Halbgruppen, I–II, J. reine angew. Math.,221 (1965), pp. 20–43 and 150–159.

  29. [29]

    A. Wintner,Eratosthenian Averages, Waverly Press, Baltimore (1943).

  30. [30]

    A. Wintner -P. Hartman,On the standard deviations of additive arithmetical functions, Amer. J. Math.,62 (1940), pp. 743–752.

  31. [31]

    A. Wintner -E. R. Van Kampen,On the almost periodic behavior of multiplicative number-theoretical functions, Amer. J. Math.,62 (1940), pp. 613–626.

Download references

Author information

Additional information

Entrata in Redazione il 5 febbraio 1975.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Knopfmacher, J. Fourier analysis of arithmetical functions. Annali di Matematica 109, 177–201 (1976). https://doi.org/10.1007/BF02416959

Download citation

Keywords

  • Fourier Analysis
  • Periodic Function
  • Classical Notion
  • Arithmetical Function