Advertisement

Annali di Matematica Pura ed Applicata

, Volume 75, Issue 1, pp 95–120 | Cite as

A class of hypergeometric polynomials

  • Nadhla A. Al-Salam
Article

Summary

In this paper we study the properties of the polynomials\(_3 F_2 \left[ {\begin{array}{*{20}c} { - n,n + \gamma + 1,\zeta ;x} \\ {1 + \alpha ,1 + \beta } \\ \end{array} } \right]\).

Keywords

Hypergeometric Polynomial 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [1]
    Nadhla A. Al-Salam,Orthogonal polynomials of hypergeometric type, « Duke Mathematical Journal », Vol. 33 (1966), pp. 109–121.CrossRefzbMATHMathSciNetGoogle Scholar
  2. [2]
    W. A, Al-Salam,Operational representation for the Laguerre and other polynomials, « Duke Mathematical Journal », vol. 31 (1964), pp. 127–142.CrossRefzbMATHMathSciNetGoogle Scholar
  3. [3]
    E. W. Barnes,A transformation of generalized hypergeometric series, « Quarterly Journal of Mathematics », vol. 41 (1910), pp. 136–140.zbMATHGoogle Scholar
  4. [4]
    H. Bateman,Some properties of a certain set of polynomials, « The Tohoku Mathematical Journal », vol. 37 (1933), pp. 23–38.zbMATHGoogle Scholar
  5. [5]
    —— —— The polynomialF n(x), « Annals of Mathematics », vol. 35 (1934), pp. 767–775.CrossRefzbMATHMathSciNetGoogle Scholar
  6. [6]
    H. Buchholtz, Die Konfluente hypergeometrische Funktionen, Berlin, 1953.Google Scholar
  7. [7]
    L. Carlitz,Bernoulli and Euler numbers and orthogonal polynomials, « Duke Mathematical Journal », vol. 26 (1959), pp. 1–16.CrossRefzbMATHMathSciNetGoogle Scholar
  8. [8]
    A. Erdelyi et al, Higher Transcendental Functions, vol. 2,McGraw-Hill Co., New York; 1953.Google Scholar
  9. [9]
    W. Hahn,Uber orthogonal Polynome, die q—Differenzengceichungen genugen, « Mathematische Nachrichten », vol. 2 (1949), pp. 4–34.zbMATHMathSciNetGoogle Scholar
  10. [10]
    S. Karlin andG. Szegö,On certain determinants whose elements are orthogonal polynomials, « Journal d’Analyse Mathematique », vol. 8 (1960–61), pp. 1–157.MathSciNetCrossRefGoogle Scholar
  11. [11]
    S. Karlin andJ. L. McGregor,The Hahn polynomials, formulas and an application, « Scripta Mathematica », vol. 26 (1961), pp. 33–46.MathSciNetzbMATHGoogle Scholar
  12. [12]
    S. Pasternack,A generalization of the polynomial F n(x), « Philosophical Magazine and Journal of Science », Ser. 7, vol. 28 (1939), pp. 209–226.zbMATHMathSciNetGoogle Scholar
  13. [13]
    E. D. Rainville, Special Functions, TheMacmillan Co., New York, 1960.zbMATHGoogle Scholar
  14. [14]
    —— ——,The contiguous function relations for p F q with application to Bateman’s J n u,v and Rice’s H n (, p, v), « Bulletin of the American Mathematical Society », vol. 51 (1945), pp. 714–723.zbMATHMathSciNetCrossRefGoogle Scholar
  15. [15]
    S. O. Rice,Some properties of 2 F 3 (−n, n−1, ; 1,p;v), « Duke Mathematical Journal », vol. 6 (1940), pp. 108–119.CrossRefzbMATHMathSciNetGoogle Scholar
  16. [16]
    R. L. Shively,On Pseudo-Laguerr Polynomials, « University of Michigan thesis », 1953.Google Scholar
  17. [17]
    J. Shohat,Sur les polynomes orthogonaux generalises, « Comptes Rendus », Paris, vol. 207 (1938), p. 556.zbMATHGoogle Scholar
  18. [18]
    I. N. Sneddon, Fourier Transforms,McGraw Hill Co., New York, 1951.Google Scholar
  19. [19]
    G. Szego,Orthogonal Polynomials, « American Mathematical Society Colloquim Publications », no. 23, revised edition, New York, 1959.Google Scholar
  20. [20]
    M. Weber andA. Erdélyi,On the finite difference analogue of Rodrique’s formula, « American Mathematical Monthly », vol. 59 (1950), pp. 163–168.CrossRefGoogle Scholar
  21. [21]
    E. T. Whittaker andG. N. Watson,A Course of Modern Analysis, « Fourth Edition », Cambridge, 1950.Google Scholar

Copyright information

© Nicola Zanichelli Editore 1967

Authors and Affiliations

  • Nadhla A. Al-Salam
    • 1
  1. 1.EdmontonCanada

Personalised recommendations