Advertisement

Annali di Matematica Pura ed Applicata

, Volume 40, Issue 1, pp 161–166 | Cite as

Cauchy's problem for non-linear hyperbolic differential equations in two independent variables

  • R. Courant
  • P. Lax
Article

Summary

The classical initial value problem for nonlinear hyperbolic equations is solved by a somewhat more direct iteration process than used previously.

Keywords

Differential Equation Hyperbolic Equation Iteration Process Nonlinear Hyperbolic Equation Direct Iteration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

ReferencesBibliography

  1. [1]
    M. Cinquini-Cibrario,Un teorema di esistenza e di unicità per un sistema di equazioni alle derivate parziali, « Annali di Matematica », Volume 24, 1945, pp. 157–175.zbMATHMathSciNetGoogle Scholar
  2. [2]
    R. Courant andD. Hilbert,Methoden der mathematischen Physik, Volume 2, Springer, Berlin, 1937.Google Scholar
  3. [3]
    R. Courant andP. D. Lax,Non linear partial differential equations with two independent variables, « Communications on Pure on Applied Mathematics », Volume 2, 1949, pp. 255–273.MathSciNetGoogle Scholar
  4. [4]
    A. Douglis,Existence theorems for hyperbolic systems, « Communications on Pure and Applied Mathematics », Volume 5, 1952, pp. 119–154.zbMATHMathSciNetGoogle Scholar
  5. [5]
    K. O. Friedrichs,Nonlinear hyperbolic differential equations for functions o i two independent variables, « American Journal of Mathematics », Volume 70, 1948, pp. 555–589zbMATHMathSciNetGoogle Scholar
  6. [6]
    J. Schauder,Cauchysches Problem für partielle Differenzialgleichungen erster Ordnung. Anwendung einiger sich auf die Absolutbeträge der Lösungen bezeihenden Abschätzungen, « Commentarii Math. Helv. », Volume 9, 1937, pp. 263–283.CrossRefzbMATHGoogle Scholar
  7. [7]
    P. Hartman andA. Wintner,On hyperbolic partial differential equations, « American Journal of Mathematics », Volume 74, 1952, pp. 834–864.MathSciNetGoogle Scholar
  8. [8]
    H. Lewy, « Math. Ann. », Bd. 97, pp. 179 ff.Google Scholar
  9. [9]
    K. O. Friedrichs andH. Lewy, « Math. Ann. », Bd. 99, p. 200 ff.Google Scholar
  10. [10]
    P. D. Lax,Nonlinear hyperbolic equations, « Communications on Pure and Applied Mathematics », Volume 6, 1953, pp. 231–258.zbMATHMathSciNetGoogle Scholar

Copyright information

© Swets & Zeitlinger B. V. 1955

Authors and Affiliations

  • R. Courant
    • 1
  • P. Lax
    • 1
  1. 1.New YorkUSA

Personalised recommendations