## Summary

An important tool in optimal control theory is the Pontrjagin maximum principle. A necessary condition for optimality, the principle is an analytic description of a control whose response stays in the boundary of the attainable set. See*[2, 21]*. It is useful to know that the attainable set has nonempty interior because the maximum principle gives no information otherwise. If we consider nonlinear, autonomous control systems determined on a manifold M by the set ℳ^{k} of autonomous, C^{k} controllable vector fields, then a few technical restrictions on the control system allow us to conclude that there is an open dense subset O of ℳ^{k} such that each element of O has an attainable set contained in the closure of its own interior.

## References

- [1]
R. Abraham -J. Robbin,

*Transversal mappings and flows*, W. A. Benjamin, New York, 1967. - [2]
F. Albrecht,

*Topics in control theory*, Springer-Verlag, Berlin, 1968. - [3]
M. Athans -P. L. Falbe,

*Optimal control: an introduction to the theory and its applications*, McGraw-Hill, New York, 1966. - [4]
J. Dieudonné,

*Foundations of modern analysis*, Academic Press, New York, 1960. - [5]
A. F. Filipov,

*On certain questions in the theory of optimal control*, Siam J. Control,**1**(1962), pp. 76–84. - [6]
J. Gronski,

*Thesis*, «*On the classification problem for control vector fields*», University of Illinois, 1974. - [7]
R. Hermann,

*The differential geometry of foliations, II*, J. Math. Mech., II (1962), pp. 303–315. - [8]
H. Hermes,

*Controllability and the singular problem*, Siam J. Control,**2**, no. 2 (1964), pp. 241–260. - [9]
V. Jurdgevic -S. Sussman,

*Controllability of nonlinear systems*, J. Diff. Equations,**12**(1972), pp. 95–116. - [10]
S. Lang,

*Introduction to differentiable manifolds*, Interscience, New York, 1967. - [11]
E. B. Lee -L. Markus,

*Foundations of optimal control theory*, John Wiley and Sons, New York, 1967. - [12]
C. Lobry,

*Quelques aspects qualitatifs de la théorie de la commande*, Thèse, L'Université de Grenoble, 1972. - [13]
J. N. Mather,

*Stability of C*^{∞}*mappings II*, Ann. Mat.,**89**(1969), pp. 254–281. - [14]
C. Morlet,

*Seminaire Henri Cartan, Topologie différentielle*, Ecole Normale Supérieure, 1961–62. - [15]
R. Narasimhan,

*Analysis on real and complex manifolds*, North Holland Publishing Company, Amsterdam, 1968. - [16]
L. S. Pontrjagin et al.,

*The mathematical theory of optimal processes*, Macmillan, New York, 1964. - [17]
D. Rebhuhn,

*On the closure of sets of attainability in***R**^{2}, to appear, caps. - [18]
D. Rebhuhn,

*On closed sets of attainability*, to appear. - [19]
D. Rebhuhn,

*On the set of attainability, Thesis*, University of Illinois, 1974. - [20]
D. Rebhuhn,

*On the set of attainability of nonlinear, nonautonomous control systems*, to appear, Siam J. Control. - [21]
E. Roxin,

*A geometric interpretation of Pontryagin's maximum principle*, in*Nonlinear differential equations and nonlinear mechanics*, Academic Press, New York, 1963. - [22]
S. Sternberg,

*Lectures on differential geometry*, Prentice-Hall, Englewood Cliffs, N. J., 1964.

## Author information

### Affiliations

## Additional information

Entrata in Redazione il 20 novembre 1974.

## Rights and permissions

## About this article

### Cite this article

Rebhuhn, D. On the set of attainability of nonlinear autonomous control systems.
*Annali di Matematica* **107, **291–309 (1975) doi:10.1007/BF02416478

Issue Date:

### Keywords

- Control System
- Vector Field
- Control Theory
- Controllable Vector
- Maximum Principle