Sui fibrati con struttura quaternionale generalizzata
- 45 Downloads
- 12 Citations
Summary
Quaternion generalized fiber bundles\(\tilde E_n^\mathbb{Q} \to X\) are studied, both isomorphic to global tensorial product\(E_n^\mathbb{Q} \otimes _\mathbb{Q} E_1^\mathbb{Q} (E_n^\mathbb{Q} , E_1^\mathbb{Q}\) ordinary quaternion fiber bundles right and left respectively) and quite general ones. A cohomology class\(\varepsilon (\tilde E_n^\mathbb{Q} ) \in H^2 (X;\mathbb{Z}_2 )\) is considered which represents the obstruction in order the fiber bundle be a tensorial product. Several properties and a splitting principle are proved for bundles\(\tilde E_n^\mathbb{Q}\). On this ground and founding on a convenient bundle BE → X associated to jaz (that we call Bonan's bundle and for which ɛ(\(\tilde E_n^\mathbb{Q}\)=ɛ(BE)) relations are stated among Stiefel-Whitney classes of\(\tilde E_n^\mathbb{Q}\), BE and the class ɛ.
Preview
Unable to display preview. Download preview PDF.
Bibliografia
- [1]E. Bonan,Sur les G-structures du type quaternionien, Cahiers de Topologie etGéometrie différentielle,9, fasc. 4 (1967).Google Scholar
- [2]A. Borel,La cohomologie mod 2de certains espaces homogènes, Commentarii Mathematici Helvetici,27 (1953).Google Scholar
- [3]A. Dold,Metodi moderni di topologia algebrica, Quaderni dei gruppi di ricerca matematica del C.N.R., Roma, 1973.Google Scholar
- [4]P. Du Val,Homographies quaternions and rotations, Oxford University Press, 1964.Google Scholar
- [5]A. Gray,A note on manifolds whose holonomy groups is a subgroup of Sp(n)·Sp(1), Michigan Math. J.,19 (1969).Google Scholar
- [6]A. Gray,Errata, Michigan Math. J.,17 (1970).Google Scholar
- [7]Th. Hangan,Tensor product tangent bundles, Archiv. der Mathematick,19, fasc. 4 (1968), pp. 436–448.CrossRefzbMATHMathSciNetGoogle Scholar
- [8]D. Husemoller,Fibre bundles, McGraw-Hill, New York, 1966.Google Scholar
- [9]E. Martinelli,Varietà a struttura quaternionale generalizzata, Atti Accad. Naz. Lincei,26 (1959), pp. 353–362.zbMATHMathSciNetGoogle Scholar
- [10]E. Martinelli,Metriche hermitiane sulle varietà a struttura quasi quaternionale generalizzata, Atti Accad. Naz. Lincei,39 (1965), pp. 400–407.zbMATHMathSciNetGoogle Scholar
- [11]J. T. Schwartz,Differential Geometry and Topology, Gordon and Breach, New York, 1968.Google Scholar
- [12]R. H. Szczarba —W. C. Hsiang,On the tangent bundle of a Grassmann Manifold, Amer. J. Math.,86 (1964), pp. 698–704.MathSciNetGoogle Scholar
- [13]E. M. Spanier,Algebraic Topology, McGraw-Hill, New York, 1966.Google Scholar
- [14]N. Steenrod,The Topology of Fibre Bundles, Princeton University Press, Princeton, 1951.Google Scholar
- [15]A. Weil,Sur les théorèmes de de Rham, Commentarii Mathematici Helvetici,26 (1952), pp. 313–339.MathSciNetGoogle Scholar
- [16]J. A. Wolf,Complex homogeneous contact manifolds and quaternionic symmetric spaces, Journal of Math. and Mech.,14 (1965), p. 166.Google Scholar