Annali di Matematica Pura ed Applicata

, Volume 86, Issue 1, pp 169–180 | Cite as

A boundedness result for the solutions of certain third order differential equations

  • K. E. Swick


In this paper a piece-wise linear extension of the usual Liapunov type function is constructed and used to investigate the equation
$$\dddot x + a\dddot x + g\left( x \right)\dot x + h\left( x \right) = p\left( t \right).$$


Differential Equation Type Function Linear Extension Order Differential Equation Boundedness Result 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [1]
    J.O.C. Ezeilo,On the Boundedness of Solutions of the Equation x+ax+f(x)x+g(x)=p(t), Ann. Math. Pura Appl., IV. Vol. LXXX, (1968) pp. 281–300.CrossRefMathSciNetGoogle Scholar
  2. [2]
    K. E. Swick,Asymptotic Behavior of the Solutions of Certain Third Order Differential Equations, (to appear) SIAM J. Appl. Math.Google Scholar
  3. [3]
    V. A. Pliss,Nonlocal Problems of the Theory of Oscillations, Academic Press, (1966).Google Scholar
  4. [4]
    T. Yoshizawa,Stability Theory by Liapunov's Second Method, Tokyo, Japan, (1966).Google Scholar
  5. [5]
    J. P. La Salle,Stability Theory for Ordinary Differential Equations, J. of Diff. Equs., 4, pp. 57–65.Google Scholar
  6. [6]
    R. Reisig -G. Sansone -R. Conti,Nichtlineare Differeutialgleichungen höherer Ordnung, Edizioni Cremonese, Rome, (1969).Google Scholar
  7. [7]
    Müller -Von Wolfdietrich,Über Stabilität und Beschränktheit der Lösungen gewisser Differentialgleichungen dritter Ordnung, Math. Nachr., Bd. 41, H. 4–6, pp. 335–359, (1969).MathSciNetGoogle Scholar
  8. [8]
    J. Voráček,Einige Bemerkungen über nightlineare Differentialgleichung dritter Ordnung, Abh. Deutsch. Akal. Wiss. Berlin Kl. Math. Phys. Tech. Jg. 1965, Nr. I, 372–378 (3. Konferenz über Nichtlineare Schwingungen, Berlin, 25.–30.5, 1964, B and I).Google Scholar

Copyright information

© Nicola Zanichelli Editore 1970

Authors and Affiliations

  • K. E. Swick
    • 1
  1. 1.Los Angeles

Personalised recommendations