Advertisement

Applied functorial semantics,1

  • 53 Accesses

  • 6 Citations

Summary

In questo lavoro presentiamo due teoremi di rappresentazione funtoriale, l'uno(2.1) contravariante, l'altro(3.1) covariante. Questi due teoremi risultono, ambe due, d'una forma primitiva(1.7) del teorema fundamentale di caratterizzazione di Jon Beck nella semantica funtoriale.

Si ritrova, come caso speciale del primo, la dualità di Stone trà gli anneli di Boole e gli spazii compatti0-dimensionali; di modo analogo, si ritrova dall'altro un teorema di tipo « risoluzione spettrale » per una classa di spazii vettoriali reticolati, annunciata senza dimostrazione in un articolo anteriore[11] dell'autore.

Bibliography

  1. [1]

    J. Beck,Untitled manuscript, Cornell, 1966.

  2. [2]

    J. Bénabou,Critères de représentabilité des foncteurs, C. R. Acad. Sci. Paris260 (1965), 752–755.

  3. [3]

    S. Eilenberg andG. M. Kelly,Closed categories, Proc. Conf. Categ. Alg. (La Jolla, 1965), Springer, Berlin, 1966, 421–562.

  4. [4]

    P. J. Freyd,Abelian Categories, Harper & Row, New York, 1964.

  5. [5]

    J. R. Isbell,Epimorphisms and dominions, Proc. Conf. Categ. Alg. (La Jolla, 1965), Springer, Berlin, 1966, 232–246.

  6. [6]

    F. W. Lawvere,Functorial Semantics of Algebraic Theories, Dissertation, Columbia, 1963.

  7. [7]

    —— ——,Functorial semantics of algebraic theories, Proc. Nat. Acad. Sci. 50 (1963), 869–872.

  8. [8]

    F. E. J. Linton,Autonomous categories and duality of functors, J. Algebra 2 (1965), 315–349.

  9. [9]

    — ——,Injective boolean σ-algebras, Arch. Math. 17 (1966), 383–387.

  10. [10]

    —— ——,Some aspects of equational categories, Proc. Conf. Categ. Alg. (La Jolla, 1965), Springer, Berlin, 1966, 84–94.

  11. [11]

    —— ——,Functorial measure theory, Proc. Conf. Funct. Analysis (Irvine, 1966), Thompson, Washington, D.C., 1968, 36–49.

  12. [12]

    S. Mac Lane,Categorical Algebra, Bull. A.M.S. 71 (1965), 40–106.

  13. [13]

    E. Manes,A Triple Miscellany, Dissertation, Wesleyan, 1967.

  14. [14]

    B. Mitchell,The full embedding theorem, Amer. J. Math. 86 (1964), 619–637.

  15. [15]

    —— ——,Theory of Categories, Academic Press, New York, 1965.

  16. [16]

    A. Ramsay,A theorem on two commuting observables, J. Math. Mech. 15 (1966), 227–234.

  17. [17]

    J. Słomiński,The theory of abstract algebras with infinitary operations, Rozprawy Mat. 18 (1959), 1–67.

Download references

Author information

Additional information

Dedicated to the sixtieth birthday of Prof. Edgar R. Lorch

Research supported by an NAS-NRC Postdoctoral Research Fellowship, stimulated by the 1966–7 E.T.H. Triples Seminar, Zürich, and recorded at Παλαιоℵχστρiτσα, 8 April, 1967.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Linton, F.E.J. Applied functorial semantics,1 . Annali di Matematica 86, 1–13 (1970). https://doi.org/10.1007/BF02415703

Download citation