Annali di Matematica Pura ed Applicata

, Volume 52, Issue 1, pp 183–218 | Cite as

Classes of biorthonormal systems

  • Jacob Steinberg


The biorthogonal systems which are studied in this paper are composed of an Appel set of polynomials and of a sequence of derivatives. Conditions on one sequence are given which ensure the existence of the other. Expansion theorems in terms of derivatives and by means of summability methods are then proved.


Summability Method Biorthogonal System Expansion Theorem Biorthonormal System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [1]
    R. Boas andC. Buck,Polynomial expansions of analytic functions, « Ergebnisse der Mathematik, Neue Folge », 19, 1958.Google Scholar
  2. [2]
    P. Dienes.The Taylor series, Oxford, 1931.Google Scholar
  3. [3]
    G. Doetsch,Handbuch der Laplace transformation, Band I. Birkhauser, Basel, 1950.Google Scholar
  4. [4]
    Gelfand J. M. andSilov, G. E.,Fourier transforms of rapidly increasing functions and questions of uniqueness of the solution of Cauchy's problem, «Am. Math. Soc. Translations», Series 2, Vol. 5.Google Scholar
  5. [5]
    Guillemin,Mathematics of circuits analysis,, Wiley, 1958.Google Scholar
  6. [6]
    G. Sansone,Orthogonal functions, Interscience Publishers, 1959.Google Scholar
  7. [7]
    W. Schmeidler,Lineare Operator n im Hilbertschen Raum, Teubner, Stuttgart 1954.Google Scholar
  8. [8]
    J. Steinberg,Sur une classe d'équations intégrales singulieres, Technion scientific publications, 1954.Google Scholar
  9. [9]
    -- --Application de la théorie des suites d'Appell a une classe d'équations intégrales, « Bulletin of the Research Council of Israel », Vol. 7F, No. 2, 1958)Google Scholar
  10. [10]
    -- --Transformations intégrales qui laissent invariant tout polynôme, ibidem.Google Scholar
  11. [11]
    -- --On functions almost all of whose moments vanish, « Bull. Res. Council of Israel », Vol. 8F, No. 2, 1959.Google Scholar
  12. [12]
    -- --Integral transforms with two reproducing properties, « Bulletin Res. Counc. of Israel », Vol. 8F, No. 4, 1960.Google Scholar
  13. [13]
    Titchmarsh,Introduction to the theory of Fourier integrals, Oxford, 1937.Google Scholar
  14. [14]
    D. Widder,The Laplace transform Princeton, 1946.Google Scholar

Copyright information

© Nicola Zanichelli Editore 1960

Authors and Affiliations

  • Jacob Steinberg
    • 1
  1. 1.HaifaIsrael

Personalised recommendations