Advertisement

Plant and Soil

, Volume 186, Issue 2, pp 285–291 | Cite as

Chemical soil conditions in pristineNothofagus forests of New Zealand as compared to German forests

  • E. Matzner
  • M. Davis
Article

Abstract

In many German forest soils low base saturation of CEC in deeper soil layers was reported and acidic deposition is seen as the major cause of these findings. To test this hypothesis we sampled 5 New Zealand forest soils from pristine beech (Nothofagus fusca, N. menziesii, N. solandri) sites under climatic and geological conditions comparable to higher elevations in Germany. The soils developed from granite and greywacke. Soil samples were analyzed for pH and the exchangeable cations were extracted with 1M NH4Cl. The base saturation of all soil profiles was very low, even in deeper layers and was thus similar to the patterns found in many German forest soils. The pH was generally higher in the New Zealand soils as compared to Germany. The reason for the depletion of base cations in deeper soil layers of New Zealand forest soils is most likely the leaching of base cations with HCO3- resulting from the dissociation of carbonic acid in connection with high amounts of seepage. Thus, under high rainfall conditions, the low base saturation found in deeper layers of forest soils cannot exclusively be attributed to the effects of acidic depositions and land use. ei]Section editor: R F Huettl

Key words

cation exchange capacity New Zealand Nothofagus soil acidification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benecke P 1995 Verlagerung von Versauerungsfronten und Auswirkungen auf das Grundwasser. Informationsber. Bayer. Landesamtes Wasserwirtsch. Heft 3/95, 153–168.Google Scholar
  2. BML 1994 Bundesweite Bodenzustandserhebung im Wald (BZE). Bundesministerium für Ernährung, Landwirtschaft und Forsten, 2. Auflage. BML, Bonn, Germany.Google Scholar
  3. Böttcher J, Strebel O and Duynisveld W H M 1985 Vertikale Stoffkonzentrationsprofile im Grundwasser eines Lockergesteins-Aquifers und deren Interpretation (Beispiel Fuhrberger Feld). Z. Dtsch. Geol. Ges. 136, 543–552.Google Scholar
  4. Bredemeier M 1987 Quantification of ecosystem-internal proton production from the ion balance of the soil. Plant and Soil 101, 273–280.CrossRefGoogle Scholar
  5. Buberl H G, von Wilpert K, Trefz-Malcher G, Hildebrand E E and Wiebel M 1994 Der chemische Zustand von Waldböden in Baden-Württemberg: Ergebnisse der Bodenzustandserhebung im Wald 1989–92 (BZE). Mitt. Forstl. Vers. Forschungs. Baden-Württemberg, Heft 182.Google Scholar
  6. Cosby B J, Hornberger G M, Galloway J N and Wright R F 1985 Modeling the effects of acid deposition: Assessment of a lumped parameter model of soil water and streamwater chemistry. Water Resour. Res. 21, 51–63.Google Scholar
  7. Davis M R 1990 Chemical composition of soil solutions extracted from New Zealand beech forests and West German beech and spruce forests. Plant and Soil 126, 237–246.CrossRefGoogle Scholar
  8. Driscoll C T and Schecher W D 1988 Aluminium in the environment.In Metal ions in biological Systems. Vol. 24. Aluminium and its Role in Biology. Eds. HSigel and ASigel. pp 59–122. Marcel Dekker, Inc. New York, USA.Google Scholar
  9. Deutschmann G 1994 Zustand und Entwicklung der Versauerung des Bodens und des oberflächennahen Buntsandsteinuntergrundes eines Waldkökosystems im Solling. Ber. Forschungsz. Waldökosyst. Univ. Göttingen, Reihe A, Band 118, 1–179.Google Scholar
  10. Gilman G P 1979 A proposed method for the measurement of exchange properties of highly weathered soils. Aust. J. Soil Res. 17, 129–139.Google Scholar
  11. Gulder H-J and Kölbel M 1993 Waldbodeninventur in Bayern. Forstliche Forschungsberichte München 132, der Bayerischen Forstlichen Versuchs- und Forschungsanstalt.Google Scholar
  12. Herrmann R, Peters K-C and Baumgartner I 1992 Comparing the behaviour of aluminium species within the hydrological cycle in Westland, New Zealand, and the Fichtelgebirge, Germany. Catena 19, 241–258.Google Scholar
  13. Jardine P M, Weber N L and McCarthy J F 1989 Mechanisms of dissolved organic carbon adsorption on soil. Soil Sci. Soc. Am. J. 53, 1378–1385.Google Scholar
  14. Johnson D W 1977 The natural acidity of some unpolluted waters in southeastern Alaska and potential impacts of acid rain. Water Air Soil Pollut. 16, 243–252.Google Scholar
  15. Johnson D W, Cresser M S, Nilsson I S, Turner J, Ulrich B, Binkley D and Cole D W 1991 Soil changes in forest ecosystems: Evidence for and possible causes.In Acidic deposition: its nature and impacts. Eds. F TLast and RWatlin. pp 81–116. The Royal Soc. of Edinburgh 97B, UK.Google Scholar
  16. Karltun E 1994 Principal geographic variation in the acidification of Swedish forest soils. Water Air Soil Pollut. 76, 353–362.CrossRefGoogle Scholar
  17. Krebs M, Moritz M and Bittersohl J 1995 Versauerung des Sickerraums in den Untersuchungsgebieten Lehstenbach/Fichtelgebirge und Metzenbach/Spessart. Informationsber. Bayer. Landesamtes Wasserwirtsch, Heft 3/95, 191–195.Google Scholar
  18. König N and Bartens H 1996 Untersuchung zur Vergleichbarkeit der AKe-Bestimmungen mittels BaCl2-Extraktion (EG-Methode) und NH4Cl-Perkolation (deutsche Methode). Ber. Forschungsz. Waldökosyst. Univ. Göttingen, Reihe B, Band 44, 1–55.Google Scholar
  19. Lükewille A 1995 Rekonstruktion der Boden- und Gewässerversauerung in der Langen Bramke (Harz). Bayreuther Forum Ökologie, Band 21. Univ. Bayreuth, Bayreuth.Google Scholar
  20. Malessa V and Ulrich B 1989 Beitrag zum Einfluß der Bodenversauerung auf den Zustand der Grund- und Oberflächengewässer. Dtsch. Verband Wasserwirtsch. Kulturb. Mitt. 17, 213–219.Google Scholar
  21. Malessa V 1993 Depositionsbedingte Tiefengradienten der Bodenversauerung in der Sösemulde (Westharz). Ber. Forschungsz. Waldökosyst. Univ. Göttingen, Reihe A, Band 98, 1–233.Google Scholar
  22. Malessa V 1994 Ökologische Typisierung von Tiefengradienten der Bodenversauerung.In Gefahr für Ökosysteme und Wasserqualität. Eds. JMatschullat, HHeinrichs, JSchneider and BUlrich. pp 162–185. Springer-Verlag, Berlin, Germany.Google Scholar
  23. Matzner E 1989 Acidic Precipitation: Case Study Solling.In Acidic Precipitation. Vol. 1. Case Studies. Eds. D CAdriano and MHavas. pp 39–81. Springer Verlag, Berlin, Germany.Google Scholar
  24. Matzner E and Murach D 1995 Soil changes induced by air pollutant deposition and their implication for forests in central Europe. Water Air Soil Pollut. 85, 63–76.CrossRefGoogle Scholar
  25. Meiwes K J, Merine A and Fortmann H 1994 Untersuchungen zur Versauerung in Bohrprofilen von Meßtellen des Grundwassergütemeßnetzes des Landes Niedersachsen. Ber. Forschungsz. Waldökosyst. Univ. Göttingen, Reihe B, Band 34, 1–86.Google Scholar
  26. Reuss J O and Johnson D W 1986 Acid deposition and the acidification of soils and waters. Ecol. Stud. 59, 1–119.Google Scholar
  27. Ugolini F O, Stoner M G and Marrett D J 1987 Arctic pedogenesis: 1. Evidence for contemporary podzolization. Soil Sci. 144, 90–100.Google Scholar
  28. Ulrich B and Sumner M E 1991 Soil Acidity. Springer Verlag, Berlin, Germany.Google Scholar
  29. Ulrich B 1994 Process hierarchy in forest ecosystems: an integrative ecosystem theory.In Effects of Acid Rain on Forest Processes. Eds. D LGodbold and AHüttermann. pp 353–397. Wiley-Liss, Inc., New York.Google Scholar
  30. Ulrich B 1995 Der okologische Bodenzustand — seine Veränderung in der Nacheiszeit, Ansprüche der Baumarten. Forstarchiv 66, 117–127.Google Scholar
  31. VanBreemen N, Mulder J and Driscoll C T 1983 Acidification and alkalinization of soils. Plant and Soil 75, 283–308.CrossRefGoogle Scholar
  32. Verhoeven W, Herrmann R, Eiden R and Klemm O 1987 A comparison of chemical composition of fog and rainwater collected in the Fichtelgebirge. Federal Republic of Germany and from the South Island of New Zealand. Theor. Appl. Climatol. 38, 210–221.CrossRefGoogle Scholar
  33. Warfvinge P and Sverdrup H 1992 Calculating critical loads of acid deposition with profile — a steady-state soil chemistry model. Water Air Soil Pollut. 63, 119–143.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • E. Matzner
    • 1
    • 2
  • M. Davis
    • 1
    • 2
  1. 1.Department of Soil Ecology, BITÖKUniversity of BayreuthBayreuthGermany
  2. 2.New Zealand Forest Research InstituteRangioraNew Zealand

Personalised recommendations