Advertisement

Annali di Matematica Pura ed Applicata

, Volume 54, Issue 1, pp 285–293 | Cite as

A rank number for a class of polygons

  • Douglas Derry
Article

Summary

Il the number of tangents of a polygon of real order n in real projective n-space which intersect an arbitrary n−2 − space is counted according to a certain convention this number is shown not to exceed 2n−2.

Keywords

Rank Number Real Order 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [1]
    D. Derry,On Polygons in Real Projective n-Space « Math. Scand. » 6 (1958), 50–66.zbMATHMathSciNetGoogle Scholar
  2. [2]
    J. Hjelmslev,Om Polygoner og Polyedre, « Mat. Tidsskr. » B (1925), 65–73.zbMATHMathSciNetGoogle Scholar
  3. [3]
    C. Juel,Beispiele von Elementarkurven und Elementarflächen, « Atti Congr. Internaz. Mat. » 1928 (Bologna, Zanichelli) t. 4, pg. 195–215.Google Scholar
  4. [4]
    P. Scherk,Über differenzierbare Kurven und Bögen II, « Časopis Pest Mat. Fys. » 66 (1937), 172–191.zbMATHGoogle Scholar

Copyright information

© Nicola Zanichelli Editore 1961

Authors and Affiliations

  • Douglas Derry
    • 1
  1. 1.VancouverCanada

Personalised recommendations