Advertisement

Annali di Matematica Pura ed Applicata

, Volume 35, Issue 1, pp 183–202 | Cite as

The scalar form of Jacobi's equations in the calculus of variations

  • Hanno Rund
Article

Summary

The tensorial equations of geodesic deviation in a generalised metric (Finsler) space of n dimensions are reduced to a single equation in scalar form involving only the length of the infinitesimal variation vector. The terms occurring in this equation are interpreted geometrically by means of the theory of subspaces. An expression for the second variation of the length integral is determined, from which the differential equations of the accessory problems are obtained. These, the so-calledJacobi equations, are shown to contain the above-mentioned scalar form of the equation of geodesic deviation as a special case. This leads to a novel general discussion of the accessory problem in Calculus of Variations.

Keywords

Differential Equation Single Equation Scalar Form Variation Vector Accessory Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Bibliography

  1. [1]
    H. Rund,Eine Krümmungstheorie in Finslerschen Räumen, « Math. Ann »,125, 1–18, (1952).CrossRefzbMATHMathSciNetGoogle Scholar
  2. [2]
    T. Levi-Civita,Sur l'écart géodésique, « Math. Ann. »,97, 291–320, (1926).CrossRefzbMATHMathSciNetGoogle Scholar
  3. [3]
    H. Rund,Ueber die Parallelverschiebung in Einslerschen Räumen, « Math. Z. »,54, 115–128, (1951).CrossRefzbMATHMathSciNetGoogle Scholar
  4. [4]
    E. Bompiani,Sulle connessioni affini non-posizionali, « Arch. d. Math. »,3, 183–186, (1952).CrossRefzbMATHMathSciNetGoogle Scholar
  5. [5]
    O. Onicescu,Scostamento geodetico, stabilità e problema di Whittaker, « Rendic. Accad. Lincei »,5, 561–563, (1927).zbMATHGoogle Scholar
  6. [6]
    E. Bortolotti,Scostamento geodetico e sue generalizzazioni, « Giornale di Matematiche di Battaglini »,64, 1–39, (1928).Google Scholar
  7. [7]
    J. L. Synge,On the first and second variations of the line integral in Riemannian space, « Proc. London Math. Soc. », 2,25, 247–264, (1926).zbMATHGoogle Scholar
  8. [8]
    H. Rund,Zur Begründung der Differentialgeometrie in Minkowskischen Räumen, « Arch. d. Math. »,3, 60–69, (1952).CrossRefzbMATHMathSciNetGoogle Scholar
  9. [9]
    H. Rund,The theory of subspaces of a Finsler space, Part. I, « Math. Z. »,56, 363–375, (1952).CrossRefzbMATHMathSciNetGoogle Scholar
  10. [10]
    H. Rund,The theory of subspaces of a Finsler space, Part. II, « Math. Z. »,57, 193–210, (1952).CrossRefMathSciNetGoogle Scholar
  11. [11]
    W. Blaschke,Vorlesungen über Differentialgeometrie, Band I, 3rd edition, Berlin, (1924).Google Scholar
  12. [12]
    E. T. Davies,On the second variation of a simple integral with movable end-points, « Journ. London Math. Soc. ».24, 241–247, (1949).Google Scholar
  13. [13]
    C. Carathéodory,Variationsrechnung und partielle Differentialgleichungen erster Ordnung, Berlin, (1935).Google Scholar
  14. [14]
    G. A. Bliss,Jacobi's Condition for problems in the Calculus of Variations in parametric form. « Trans. Amer. Math. Soc. »,17, 195–206, (1916).CrossRefzbMATHMathSciNetGoogle Scholar
  15. [15]
    O Bolza,Vorlesungen über Variationsrechnung, Leipzig, (1909).Google Scholar

Copyright information

© Swets & Zeitlinger B. V. 1953

Authors and Affiliations

  • Hanno Rund
    • 1
  1. 1.BonnGermany

Personalised recommendations