Advertisement

Annali di Matematica Pura ed Applicata

, Volume 44, Issue 1, pp 105–133 | Cite as

Distributionen, Funktionen beschränkter Variation und Lebesguescher Inhalt nichtparametrischer Flächen

  • Klaus Krickeberg
Article

Literatur

  1. [1]
    Caccioppoli, R.,Misura e integrazione sugli insiemi dimensionalmente orientati, I, II, « Atti Accad. naz. Lincei, Rend., Cl. Sci. fis. mat. natur. », VIII, Ser.12, 3–11, 137–146 (1952).MathSciNetGoogle Scholar
  2. [2]
    Calkin, J. W.,Functions of real variables and absolute continuity, I, « Duke Math. J. »,6, 170–186 (1940).CrossRefMathSciNetGoogle Scholar
  3. [3]
    Carathéodory, C.,Vorlesungen über reelle Funktionen, 2. Aufl., Leipzig und Berlin 1927.Google Scholar
  4. [4]
    Cesari, L.,Sulle funzioni a variazione limitata, « Ann. R. Scuola Norm. Sup. Pisa. Sc. fis. mat. », II. Ser.5, 299–313 (1936).MathSciNetGoogle Scholar
  5. [5]
    de Giorgi, G.,Su una teoria generale della misura (r − 1)-dimensionale in uno spazio ad r dimensioni, « Ann. Mat. pura appl. », IV. Ser.36, 191–213 (1954).Google Scholar
  6. [6]
    de Giorgi, E.,Nuovi teoremi relativi alle misure (r − 1)-dimensionali in uno spazio ad r dimensioni, « Ricerche Mat. »,4, 95–113 (1955).zbMATHMathSciNetGoogle Scholar
  7. [7]
    de Rham, G.,Variétés différentiables, « Actual. sc. ind. », 1222, Paris 1955.Google Scholar
  8. [8]
    Evans, G. C.,Fundamental points of potential theory, « Rice Institute Pamphlet »,7, 252–329 (1920).Google Scholar
  9. [9]
    Evans, G. C.,Note on a theorem of Bôcher, « Amer. J. Math. »,50, 123–126 (1928).zbMATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    Evans, G. C.,Complements of potential theory, II, « Amer. J. Math. »,55, 29–49 (1933).CrossRefMathSciNetGoogle Scholar
  11. [11]
    Fleming, W. H., andL. C. Young,Representations of generalized surfaces as mixtures, « Rend. Circ. mat. Palermo », II. Ser.5, 117–144 (1956).CrossRefMathSciNetGoogle Scholar
  12. [12]
    Goffman, C.,Lower-semi-continuity and area functions, I, « Rend. Circ. mat. Palermo », II. Ser.2, 203–235 (1953).CrossRefMathSciNetGoogle Scholar
  13. [13]
    Goffman, C.,Convergence in area of integral means, « Amer. J. Math. »,77, 563–574 (1955).zbMATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    Halmos, P. R.,The decomposition of measures, « Duke Math. J. »,8, 386–392 (1941).CrossRefMathSciNetGoogle Scholar
  15. [15]
    Haupt-Aumann-Pauc,Differential- und Integralrechnung, III, 2. Aufl. Berlin 1955.Google Scholar
  16. [16]
    Krickeberg, K. Über den Gauszschen und den Stokesschen Integralsatz, I, II, III, « Math. Nachr. »,10, 261–314 (1953),11, 35–60 (1954),12, 341–365 (1954).zbMATHCrossRefMathSciNetGoogle Scholar
  17. [17]
    Kuratowski, C.,Topologie, I, 2. éd. Warszawa 1948.Google Scholar
  18. [18]
    Lusin, N.,Leçons sur les ensembles analytiques, Paris 1930.Google Scholar
  19. [19]
    Montgomery, D.,Properties of plane sets and functions of two variables, « Am. J. Math. »,56, 569–586 (1934).CrossRefGoogle Scholar
  20. [20]
    Morrey, C. B., Jr.,Functions of several variables and absolute continuity, II, « Duke Math. J. », 6, 187–215 (1940).CrossRefMathSciNetGoogle Scholar
  21. [21]
    Radó, T.,Sur le calcul des surfaces courbes, « Fundamenta Math. »,10, 197–210 (1927).zbMATHGoogle Scholar
  22. [22]
    Saks, St.,Theory of the integral, 2nd. ed. Warszawa 1937.Google Scholar
  23. [23]
    Schwartz, L.,Théorie des distributions, I, II, « Actual. sc. ind. », 1091, Paris 1950, 1122, Paris 1951.Google Scholar
  24. [24]
    Sierpinski, W.,Sur un problème concernant les ensembles mesurables superficiellement, « Fundamenta Math. »,1, 112–115 (1920).Google Scholar
  25. [25]
    Tonelli, L.,Sulla quadratura delle superficie, « Atti R. Accad. naz. Lincei », VI Ser.3, 357–362, 445–450, 633–638 (1926).Google Scholar
  26. [26]
    Tonelli, L.,Sulle funzioni di due variabili assolutamente continue, « Mem. R. Accad. Sc. Ist. Bologna, Sc. fis. », VIII. Ser.6, 81–88 (1928–29).Google Scholar
  27. [27]
    Young, L. C.,An expression connected with the area of a surface z = F(x, y), « Duke Math. J. »,11, 43–57 (1944).zbMATHCrossRefMathSciNetGoogle Scholar
  28. [28]
    Young, L. C.,A variational Algorithm, « Rivista Mat. Univ. Parma »,5, 255–268 (1954).zbMATHGoogle Scholar
  29. [29]
    Zink, R.,Direct unions of measure spaces, « Duke Math. J. »,22, 57–74 (1955).zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Swets & Zeitlinger B. V. 1978

Authors and Affiliations

  • Klaus Krickeberg
    • 1
    • 2
  1. 1.Madison
  2. 2.Würzburg

Personalised recommendations