Advertisement

Bergman’s Kernel function on a class of elliptic partial differential equations in four variables

  • 42 Accesses

Summary

In this paper, we apply the Bergman’s kernel function theory to solve the boundary value problems for a class of elliptic partial differential equations, and estimate the errors in using approximate solutions.

References

  1. [1]

    S. Bergman:Integral operators in the theory of linear partial differential equations, Ergeb. Math. U. Grenzgeb., 23, Springer, Berlin, (1960).

  2. [2]

    —— ——:Some properties of a harmonic function of three variables given by its series development, Arch. Rat. Mech. Anal. 8, (1961), pp. 207–222.

  3. [3]

    —— ——:Integral operators in the study of an algebra and of a coefficient problem in the theory of three-dimensional harmonic functions, Duke Math. Journal, vol. 30, No. 3 (1963), pp. 447–460.

  4. [4]

    —— ——:Class of solutions of linear partial differential equations in three variables, Duke Math. Journal, vol. 13, (1946), pp. 419–458.

  5. [5]

    S. Bergman andJ. G. Herriot:Numerical solution of boundary value problems by the method of integral operators, Numerische Mathematik 7, (1965), pp. 42–65.

  6. [6]

    S. Bergman andM. Schiffer:Kernel functions and elliptic differential equations in mathematical physics, Academic Press, New York, (1953).

  7. [7]

    R. Courant andD. Hilbert:Method of mathematical physics, vol. 2, Interscience Publishers, Inc., (1962).

  8. [8]

    M. F. Didon:Developments sur certains series de polynomes a un nombre quelconque de variables, Annales Sci. de l’Ecole Normale Super. Tom VIII, (1870).

  9. [9]

    A. Erdelyi, W. Magnus, F. Oberhettinger, andF. G. Tricomi:Higher transcendental functions II, McGraw-Hill, New York, (1955).

  10. [10]

    R. P. Gilbert:On harmonic functions of four variables with rational P 4-associates, Pac. J. Math., vol. 13, (1963), pp. 79–96.

  11. [11]

    —— ——:Harmonic functions in four variables with algebraic and rational P 4-associates, Annales Polonici Mathematici XV (1964), pp. 273–287.

  12. [12]

    —— ——:On a class of elliptic partial differential equations in four variables, Pac. J. Math., vol. 14, (1964), pp. 1223–1236.

  13. [13]

    —— ——:Multivalued harmonic functions of four variables, Journal d’Analyse Mathematique, vol. 15 (1965), pp. 305–323.

  14. [14]

    E. Hille:Analytic function Teory, vol. II. Ginn and Company. (1962).

  15. [15]

    C.Y. Lo:Singular behavior of zonal hyperspherical harmonic series, [SIAM J. Appl. Math. vol. 16 n. 1 (1968) pp. 167–180.

  16. [16]

    -- --:A bound for entire harmonic function of three variables, [to appear in Quarterly of Applied Mathematics].

  17. [17]

    G. Szego:Orthogonal polynomial, American Mathematical Society, (1939) vol. XXIII.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yeung Lo, C. Bergman’s Kernel function on a class of elliptic partial differential equations in four variables. Annali di Matematica 79, 93–105 (1968) doi:10.1007/BF02415180

Download citation

Keywords

  • Differential Equation
  • Partial Differential Equation
  • Approximate Solution
  • Kernel Function
  • Function Theory