Advertisement

Annali di Matematica Pura ed Applicata

, Volume 118, Issue 1, pp 229–294 | Cite as

Contributions to the spectral theory for nonlinear operators in Banach spaces

  • M. Furi
  • M. Martelli
  • A. Vignoli
Article

Keywords

Banach Space Spectral Theory Nonlinear Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Sunto

Si introduce una definizione di spettro σ(f) per applicazioni continue definite in uno spazio di Banach. Tale definizione coincide con quella classica nel caso in cui f sia lineare e continua. Alcuni dei risultati più noti della teoria spettrale lineare vengono estesi al caso non lineare. In particolare si dimostra che σ(f) è chiuso e che la sua frontiera è contenuta nello spettro puntuale approssimato σπ(f).

References

  1. [1]
    S. K. Berberian,Lectures in Functional Analysis and Operalor Theory, Springer-Verlag, 1974.Google Scholar
  2. [2]
    J. Canavati,A theory of numerical range for nonlinear operators, to appear.Google Scholar
  3. [3]
    G. Darbo,Punti uniti in trasformazioni a codominio non compatto, Rend. Sem. Mat. Padova,24 (1955), pp. 84–92.zbMATHMathSciNetGoogle Scholar
  4. [4]
    J. Dugundji,An extension of Tietze's theorem, Pacific J. Math.,1 (1951), pp. 353–367.zbMATHMathSciNetGoogle Scholar
  5. [5]
    N. Dunford - J. T. Schwartz,Linear Operators, Interscience Publishers, 1958.Google Scholar
  6. [6]
    S. Fučik - J. Nečas - J. Souček - V. Souček,Spectral Analysis of Nonlinear Operators, Lectures Notes in Mathematics, no. 346, Springer-Verlag, 1973.Google Scholar
  7. [7]
    M. Furi -M. Martelli,On α-Lipschitz retractions of the unit closed ball onto its boundary, Accad. Naz. Lincei,57 (1974), pp. 61–65.MathSciNetGoogle Scholar
  8. [8]
    M. Furi -A. Vignoli,On a property of the unit sphere in a linear normed space, Bull. Acad. Pol. Sci.,18 (1970), pp. 333–334.MathSciNetzbMATHGoogle Scholar
  9. [9]
    M. Furi -A. Vignoli,A nonlinear spectral approach to surjectivity in Banach spaces, J. Funct. Anal.,20 (1975), pp. 304–318.CrossRefMathSciNetzbMATHGoogle Scholar
  10. [10]
    M. Furi -A. Vignoli,Spectrum for nonlinear maps and bifurcation in the non differentiable case, Ann. Mat. Pura Appl.,113 (1977), pp. 265–285.MathSciNetzbMATHGoogle Scholar
  11. [11]
    M. Furi -M. Martelli -A. Vignoli,Stably solvable operators in Banach spaces, Accad. Naz. Lincei,60 (1976), pp. 21–26.MathSciNetzbMATHGoogle Scholar
  12. [12]
    K. Georg -M. Martelli,On spectral theory for nonlinear opertors, J. Funct. Anal.,24 (1977), pp. 111–119.CrossRefMathSciNetGoogle Scholar
  13. [13]
    A. Granas,The theory of compact vector fields and some applications to the topology of functional spaces, Rozprawy Matematyezne, Warszawa,30 (1962).Google Scholar
  14. [14]
    S. T. Hu,Homotopy theory, Academic Press, 1959.Google Scholar
  15. [15]
    T. Kato,Perturbation theory for linear operators, Springer-Verlag, 1966.Google Scholar
  16. [16]
    M. A. Krasnosel'skij,Topological methods in the theory of nonlinear integral equations, Pergamon Press, 1964.Google Scholar
  17. [17]
    C. Kuratowski,Sur les espaces complètes, Fund. Math.,15 (1930), pp. 301–335.zbMATHGoogle Scholar
  18. [18]
    E. Michael,Continuous selections I, Ann. of Math.,63 (1956), pp. 361–382.CrossRefzbMATHMathSciNetGoogle Scholar
  19. [19]
    L. Nirenberg,An application of generalized degree to a class of nonlinear problems, Colloq. d'Analyse Math., Liège (1971), pp. 57–74.Google Scholar
  20. [20]
    R. D. Nussbaum,Some fixed point theorems, Bull. Amer. Math. Soc.,77 (1971), pp. 360–365.zbMATHMathSciNetCrossRefGoogle Scholar
  21. [21]
    R. D. Nussbaum,The fixed point index for local condensing maps, Ann. Mat. Pura Appl.,89 (1971), pp. 217–258.zbMATHMathSciNetGoogle Scholar
  22. [22]
    B. N. Sadovskij,A fixed point principle, Funk. Anal. Prilož.,1 (1967), pp. 74–79.zbMATHGoogle Scholar
  23. [23]
    J. Schauder,Über lineare elliptische Differentialgleichunger zweiter Ordnung, Math. Z.,38 (1934), pp. 257–282.CrossRefzbMATHMathSciNetGoogle Scholar
  24. [24]
    A. E. Taylor,Introduction to Functional Analysis, John Wiley & Sons Inc., 1958.Google Scholar
  25. [25]
    G. Hetzer,Some remarks on φ +-operators and on the coincidence degree for a Fredholm equation with noncompact nonlinear perturbation, Ann. Soc. Sci. Bruxelles, Ser. I,89 (1975), pp. 497–508.zbMATHMathSciNetGoogle Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata 1978

Authors and Affiliations

  • M. Furi
    • 1
  • M. Martelli
    • 1
  • A. Vignoli
    • 2
  1. 1.Firenze
  2. 2.L'Aquila

Personalised recommendations