Sistemi ellittici di tipo A.D.N. a coefficienti variabili e condizioni di radiazione

  • 24 Accesses


I study an elliptic system, in the sense of Agmon-Douglis-Nirenberg, of partial differential equations with variable coefficients. The matrix operator is of type P(D) + + λR(x, D) where λ εC, P(D) has constant coefficients, is elliptic, and his determinant admits a special elementary solution. On the coefficients in R(x, D), sufficiently smooth, a certain behaviour at the infinity is assumed. For suitable known vectors f, the problem P(D)u - λR(x, D)u=f is shown to be equivalent to a system of singular integral equations in special subspaces of [Wl,p]N, if N is the rank of the system, as is studied in [5]. This is possible when the unknown vector u belongs to a class that, generally, is stricter than the one of existence and uniquencess for P(D) [4]. Then results on the solvability of the system follow when λ is such that P(D+λR(x, D) is elliptic.


  1. [1]

    S. Agmon -A. Douglis -L. Nirenberg,Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, II, Comm. on Pure Appl. Math.,17 (1964), pp. 35–92.

  2. [2]

    N. Aronszajn -F. Mulla -P. Szeptycki,On spaces of potential connected with L p classes, Ann. Inst. Fourier,13 (1963), pp. 211–306.

  3. [3]

    M. Aronszajn - K. Smith,Theory of Bessel potentials, Ann. Inst. Fourier,11 (1961).

  4. [4]

    G. Bottaro -P. Oppezzi,Sistemi differenziali ellittici definiti su tutto R n, Boll. U.M.I.,13-B (1976), pp. 280–298.

  5. [5]

    G. Bottaro -P. Oppezzi,Un'algebra di operatori ad integrale singolare su una nuova classe di funzioni, Boll. U.M.I. (5)14-B (1977), pp. 301–319.

  6. [6]

    A. P. Caldéron -A. Zygmund,Algebras of certain singular operators, Amer. Journ. of Math.,78, no. 2 (1956), pp. 310–320.

  7. [7]

    A. P. Caldéron -A. Zygmund,Singular integral operators and differential equations, Amer. Journ. of Math.,79, no. 4 (1957), pp. 901–921.

  8. [8]

    A. Douglis -L. Nirenberg,Interior estimates for elliptic systems of partial differential equations, Comm. on Pure Appl. Math.,8 (1955), pp. 503–538.

  9. [9]

    S. Goldberg,Unbounded linear operators, McGraw-Hill (1966).

  10. [10]

    P. Oppezzi,Esistenza e unicità della soluzione di un problema ellittico in condizioni di radiazione, Ricerche di Mat.,25 (1976), pp. 3–30.

  11. [11]

    P. Oppezzi,Esistenza e unicità per la soluzione di sistemi ellittici a coefficienti variabili, Boll. U.M.I. (5)14-B (1977), pp. 842–865.

  12. [12]

    L. Schwartz,Theorie des distributions, vol. II, Hermann, Paris (1959).

  13. [13]

    R. T. Seeley,The index of elliptic systems of singular integral operators, Journ. of Math. Anal. and Appl.,7 (1963), pp. 289–309.

  14. [14]

    B. R. Vainberg,Principles of radiation, limit absorption, limit amplitude in the general theory of partial differential equations, Russian Math. Surv.,21, no 3 (1966), pp. 115–193.

Download references

Author information

Additional information

Entrata in Redazione l'8 giugno 1977.

Lavoro svolto nell'ambito del « Laboratorio per la matematica applicata » del C.N.R. presso l'Università di Genova.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Oppezzi, P. Sistemi ellittici di tipo A.D.N. a coefficienti variabili e condizioni di radiazione. Annali di Matematica 118, 143–161 (1978) doi:10.1007/BF02415127

Download citation