Advertisement

Hypertangent BundlesW(M 2n ) with (H, ξ, η, G)-structure(M 2n ) with (H, ξ, η, G)-structure

  • 31 Accesses

  • 1 Citations

Summary

LetJ(M2n) be a vector bundle of (2n+1) dimensions over a differentiable manifold M2n. IfJ(M2n) admits an almost contact metric structure,i.e., (Φ, ξ, η, G)-structure, then it is a hypertagent bundle over M2n and the base manifold M2n admits an almost Hermitian structure. If in such a hypertangent bundleW(M2n) with (Φ, ξ, η, G)-structure the structure tensor field coincides with the second fundamental tensor field H ofW(M2n), we call it the hypertangent bundleW(M2n) with (H, ξ, η, G) structure. The base manifold M2n of such a hypertangent bundle is always totally geodesic The Nijenhuis tensor of the induced almost complex structure which is the second fundamental tensor field of M2n can be expressed interms of the covector field η ofW(M2n) and of the Poisson bracket operator [Bc, Bb] made by the tangent frame vectors Bb of M2n. If h is equal to the covariant derivative of a vector field u in M, one calls such aW(M2n) the hypertangent bundle with\((H,\xi ,\eta ,G:h = \mathop \nabla \limits^o u)\)-structure. In this case u is a Killing vector field and is a contravariant almost analytic vector field at the same time. Its base manifold M2n admits an almost Kaehlerian structure.

References

  1. [1]

    M. Apte,Sur les isométries des variétés presque Kählériennes, C. R. Acad. Sci. Paris, 242 (1956), pp. 63–65.

  2. [2]

    W. M. Boothby -H. C. Wang,On contact manifolds, Ann. of Math. 68 (1958), pp. 721–734.

  3. [3]

    B. Eckmann -A. Frölicher,Sur l’intégrabitité des structures presque complexes, C. R. Acad. Sci. Paris, 232 (1951), pp. 2284–2286.

  4. [4]

    A. Einstein -W. Mayer,Einheitliche Theorie von gravitasion und Elektrizität, Sitz. preuss. Akad. Wiss., (1931), pp. 541–557, (1932), pp. 130–137.

  5. [5]

    A. Frölicher,Zur Differentialgeometrie der komplexen Strukturen, Math. Annalen, 129 (1955), pp. 50–95.

  6. [6]

    J. M. Gray,Some global properties of contact structures, Ann. of Math., 69 (1959), pp. 421–450.

  7. [7]

    Y. Hatakeyama,Almost complex and contact structure, Sûgaku, Math. Soc. Japan, 16 (1954), pp. 1–9.

  8. [8]

    R. König,Beiträge zu einer allgemeinen Mannigfältigkeitslehre, Jahresber. Deutsch Math. Verein 28 (1920), pp. 213–228.

  9. [9]

    A. Nijenhuis,X n−1-forming set of eigenvectors, Indag. Math. 13 (1951), pp. 200–212.

  10. [10]

    K. Nomizu,Lie groups and differential geometry, Publ. Math. Soc. Japan (1956).

  11. [11]

    S. Sasaki.Contact and almost contact manifolds, Lec. Note, Taiwan Univ. (1961–1962).

  12. [12]

    —— ——,On differentiable manifolds with certain structures which are closely related to almost contact structure, I. Tôhoku Math. Journ. 10 (1960) pp. 459–476. Also, S. Sasaki - Y. Hatakeyama, II, 13 (1961) pp. 281–295.

  13. [13]

    N. Steenrod,The topology of fibre bundles, Princeton (1951).

  14. [14]

    S. Tachibana,On almost analytic vectors in certain almost Hermitian manifolds, Tôhoku Math. Journ. 11 (1959), pp. 351–363.

  15. [15]

    K. Yano,Sur la théorie des espaces à hyperconnexion euclidienne, I, II, Proc. Japan Acad., 21 (1945), pp. 156–163, pp. 164–170.

  16. [16]

    K. Yano -I. Mogi,On real representation of Kählerian manifolds, Ann. Math. 61 (1955), pp. 170–187.

  17. [17]

    K. Yano,The theory of Lie derivatives and their applications, Amsterdam (1957).

  18. [18]

    —— ——,On a structure defined by a tensor field f of type (1.1) satisfying f 3+f=0. Tensor N.S. 14 (1963) pp. 99–109.

  19. [19]

    K. Yano -S. Ishihara,On hyperconnections, Bull. Calcutta Math. Soc., 56 (1964) pp. 109–133.

  20. [20]

    K. Yano,Differential geometry of compex and almost complex spaces, Bergamon Press, N. Y., (1965).

  21. [21]

    K. Yano-S. Ishihara,Fibred space with invariant metric, to appear in Kodai Math. Sem. Rep. Japan.

Download references

Additional information

This work was supported by National Research Council, Canada, A-4037 (1967-’68).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Okubo, T. Hypertangent BundlesW(M 2n ) with (H, ξ, η, G)-structure(M 2n ) with (H, ξ, η, G)-structure. Annali di Matematica 78, 159–185 (1968) doi:10.1007/BF02415114

Download citation

Keywords

  • Vector Field
  • Vector Bundle
  • Covariant Derivative
  • Poisson Bracket
  • Tensor Field