Advertisement

Annali di Matematica Pura ed Applicata

, Volume 78, Issue 1, pp 131–157 | Cite as

Somma di generatori infinitesimali di semigruppi di contrazione e equazioni di evoluzione in spazi di Banach

  • G. Da Prato
Article

Summary

Conditions of existence of (A+B)−1, A et B infinitesimal generators of class (C0) semi-groups.

Bibliografia

  1. [1]
    N. Bourbaki,Éléments de Mathématique, Intégration, Chap. 6, Hermann, Paris.Google Scholar
  2. [2]
    G. Da Prato,Equations operationelles dans les espaces de Banach et applications, C.R., Acad. Sc. Paris (1968).Google Scholar
  3. [3]
    N. Dunford - J. T. Schwartz,Linear Operators I, Interscience (1958).Google Scholar
  4. [4]
    P. Grisvard, Ann. Scuola Norm. Sup. Pisa (1967).Google Scholar
  5. [5]
    A. Grothendiek,Leçon sur les espaces vectoriel tapologiques, Sao Paulo (1958).Google Scholar
  6. [6]
    E. Hille - R. S. Phillips,Functional Analysis and Semi-groups, Amer. Math. Soc. Coll. Pubbl. Vol. XXXI.Google Scholar
  7. [7]
    J. I. Lions,Equations Différentielles Opérationelles, Springer-Verlag (1961).Google Scholar
  8. [8]
    T. Kato,Integration of the equations of evolution in a Banach space, J. Math. Soc. of Japan5, (1953), p. 228–234.Google Scholar
  9. [9]
    —— ——.On linear differential equations in Banach Spaces, Comm. Pure and appl. Math.9, (1956), 479–486.zbMATHMathSciNetGoogle Scholar
  10. [10]
    —— ——,Abstract evolution equations of parabolic type in Banach and Hilbert spaces, Nagoya, Math. J.19 (1961), 93–125.zbMATHMathSciNetGoogle Scholar
  11. [11]
    T. Kato -H. Tanabe,On the abstract evolution equation, Osaka Math. J.14 (1962), 107–133.MathSciNetzbMATHGoogle Scholar
  12. [12]
    R. S. Phillips,Perturbation theory for semi-groups of linear operators, Trans. Amer. Math. Soc.74 (1953), 199–221.CrossRefMathSciNetGoogle Scholar
  13. [13]
    L. Schwartz,Distributions à valeurs vactorielles, Ann. Inst. Fourier (1954).Google Scholar
  14. [14]
    P. E. Sobolevski,Parabolic type equations in Banach spaces, Trudy Moscow Math.10 (1961), 297–350.Google Scholar
  15. [15]
    H. Tanabe,Evolution equations of parabolic type, Proc. Japan Acad.37 (1961), 610–613.zbMATHMathSciNetCrossRefGoogle Scholar
  16. [16]
    —— ——,On the equations of evolution in Banach spaces, Osaka Math. J.12 (1960), 365–613.Google Scholar
  17. [17]
    —— ——,A class of the equations of evolution in a Banach space, Osaka Math. J.11 (1959), 121–145.zbMATHMathSciNetGoogle Scholar
  18. [18]
    —— ——,Remarks on the equations of evolution in a Banach space, Osaka Math. J.12 (1960), 145–166.zbMATHMathSciNetGoogle Scholar
  19. [19]
    K. Yosida,On the differentiably and the representation of oneparameter semi-groups of linear operators, J. Math. Soc. Japan (1948), 15–21.Google Scholar
  20. [20]
    -- --,Functional Analysis, Springer-Verlag (1965).Google Scholar

Copyright information

© Nicola Zanichelli Editore 1968

Authors and Affiliations

  • G. Da Prato
    • 1
  1. 1.Pisa

Personalised recommendations